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A brief introduction and acknowledgments 
 

 

Ensembles of supervised learning machines and, in particular, ensembles of classifiers have been 

established as one of the main research topics in machine learning. Methods for combining 

unsupervised clusterings have been recently proposed to improve the reliability of clustering 

algorithms and to assess the validity of discovered clusters. Statistical, algorithmic, representational, 

computational and practical reasons can explain the success of ensemble methods. 

Nevertheless, several problems remain open: for instance in many cases the theoretical reasons of 

the practical success of several widely used ensemble methods is unclear; the relationships between 

the diversity and accuracy of base classifiers forming an ensemble and the impact of these 

characteristics on the effectiveness and the performances of ensemble methods is a controversial 

question among machine learning researchers. 

Though ensemble methods are subject to intensive research, there are also other open questions, 

related to real-world applications of such methods.  

The SUEMA workshop intends to provide a forum for researchers in the field of Machine Learning 

and Data Mining to discuss topics related to ensemble methods and their applications.  

The SUEMA 2010 program comprises 14 accepted papers submitted by scientists from Spain, UK, 

France, Germany, the Netherlands, Lithuania, Greece, Turkey, USA and Italy, with topics 

embracing the design and analysis of new ensemble methods and their real-world applications. 

This year, SUEMA is proud to host the PASCAL2 invited speaker, Grigorios Tsoumakas 

(University of Thessaloniki, Greece). His talk introduces multi-label learning, an emerging topic in 

ensemble methods with applications ranging from semantic annotation of images and video, to web 

page categorization, direct marketing and functional genomics. 

PASCAL2 (Pattern Analysis, Statistical Modelling and Computational Learning) is a Network of 

Excellence funded by the Seventh Framework Programme of the European Union. Its main research 

focus is on the emerging challenges created by the ever expanding applications of adaptive systems 

technologies  and their central role in the development and application of large scale cognitive 

systems to real-world problems. From this standpoint the research topics of the workshop largely 

fall within the scope of PASCAL2. 

 

The workshop chairs would like to thank the PASCAL 2 Network of Excellence and the 

Dipartimento di Scienze dell’Informazione (Università degli Studi di Milano, Italy) for the partial 

financial support of this event. 
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PASCAL 2 invited talk: 

Grigorios Tsoumakas,  

Aristotle University of Thessaloniki, Greece. 

e-mail: greg@csd.auth.gr 

 

Ensemble Methods for Multi-Label Data (abstract) 

 

Multi-label data are data consisting of training examples that are  

associated with a subset of a finite set of labels. Nowadays, such data  

are becoming ubiquitous. They arise in an increasing number and  

diversity of applications, such as semantic annotation of images and  

video, web page categorization, direct marketing, functional genomics  

and music categorization into genres and emotions. Multi-label data  

offer an exciting playground for the development of new ensemble  

methods, because of the additional dimension of the label space. In  

fact, several recent state-of-the-art algorithms for multi-label  

learning are ensemble methods. This talk introduces the task of learning  

from multi-label data and presents recently developed state-of-the-art  

ensemble methods for multi-label data. It concludes with an inverse  

interplay between the two areas, where multi-label learning is used for  

instance-based pruning of an ensemble of classifiers. 



 
 



Fast-Ensembles of Minimum Redundancy
Feature Selection

Benjamin Schowe and Katharina Morik

Technische Universität Dortmund
{schowe,morik}@ls8.cs.tu-dortmund.de

Abstract. Finding relevant subspaces in very high-dimensional data is
a challenging task not only for microarray data. The selection of features
must be stable, but on the other hand learning performance is to be
increased. Ensemble methods have succeeded in the increase of stability
and classification accuracy, but their runtime prevents them from scaling
up to real-world applications. We propose two methods which enhance
correlation-based feature selection such that the stability of feature selec-
tion comes with little or even no extra runtime. We show the efficiency of
the algorithms analytically and empirically on a wide range of datasets.

1 Introduction

The growing dimensionality of recorded data, especially in bioinformatics, de-
mands dimension reduction methods that identify small sets of features leading
to a better learning performance. Along with the high dimensionality comes a
high variance, which makes it hard to find adequate feature subsets without be-
ing kept in local optima. The large number of features challenges the runtime
of the selection algorithms. Hence, the main criteria for its quality are that the
algorithm is a) multivariate, takes into account feature correlations, b) stable,
does not vary much for unseen data of the population; c) amending learning,
the learning performance is enhanced; d) fast: it scales well for very large num-
bers of features. Ensemble methods decrease variance and, hence, are frequently
used in feature selection. However, they usually slow down the procedure. This
paper presents a method that speeds up ensembles in a simple and effective way.
A careful evaluation on 9 data sets investigates the quality of our new methods.

2 Related Work

Fast univariate filter approaches like the t-test [5] or SAM-statistics [14] com-
pute a scoring function on the features, disregarding feature interplay. Wrapper
approaches [11] better solve this problem, at the cost of much longer runtime.
Each feature set evaluation demands a cross-validated training of the used learn-
ing algorithm. Some learning algorithms provide the user with an implicit feature
ranking which can easily be exploited for feature selection. Such embedded ap-
proaches are using the weight vector of a linear SVM [15] or the frequency of



feature use of a Random Forest (RF) [3]. They are aware of feature interplay
and faster than wrappers but biased towards the learning algorithm used.

A group of new algorithms has come up to bridge the gap between fast but
univariate filters on the one hand, and slow but multivariate wrappers on the
other hand. Their goal is to find a subset of features which is highly predictive
with no or a minimum of redundant information. The correlation based feature
selection (CFS) [8] performs a sequential forward search with a correlation mea-
sure in the evaluation step. CFS iteratively adds the feature which has the best
ratio between predictive relevance of the feature and its correlation with the
already selected features. Both, predictiveness and correlation, are measured by
the entropy-based symmetrical uncertainty where the information gain IG of
feature fi w.r.t. feature fj is divided by the sum of the entropies of fi, fj . Since
CFS uses symmetrical uncertainty, it is only suitable for discrete values.

Ding and Peng [4] reinvented CFS with the capability for handling numerical
variables calling it minimum redundancy maximum relevance FS (MRMR). For
numerical features the F-test is used. For a continuous feature X and a nominal
class variable Y , both from a data set with n examples and C classes, defined as

F (X,Y ) =

(n− C)
∑
c
nc(X̄c − X̄)

(C − 1)
∑
c
(nc − 1)σ2

c

(1)

with class-pooled variance σc and nc the number of examples in class c, c ∈
{1, .., C}. The redundancy of a numerical feature set is measured by the absolute
value of Pearson’s correlation coefficient

R(X,Y ) =
Cov(X,Y )√

V ar(X) · V ar(Y )
(2)

It detects a linear dependency between X and Y . Another possible measure for
the dependency between two nominal variables used by MRMR [4] is the mutual
information

MI(X,Y ) =
∑
x,y

P (x, y) log2
P (x, y)

P (x)P (y)
(3)

where x and y are the possible values of X and Y .
From now on, we will use the term correlation and the symbol Cor(·, ·) as a

synonym for either Pearsons’s linear correlation eq. (2), F-test eq. (1) or mutual
information eq. (3). The correlation measures are averaged over all combinations
of the feature set. Instead of the ratio, one can also use the difference between
relevance and redundancy [4]. In any case, the measures are based on variance
and, hence, are sensitive to outliers and a high variance of the input data, alike.
This instability is not suitable, e.g., for biomedical research, where the relevance
of features is in the research focus. The main algorithmic issue is the computation
of the correlations. In the first step, selecting the most relevant feature takes p
calculations of Cor(fi, y) with i = 1..p. The next steps in MRMR/CFS are



to repeatedly add the feature which has the best ratio between relevance and
redundancy to the already selected features.

Fj+1 = Fj ∪ {argmax
f∈F\Fj

Cor(f, y)
1
j

∑
g∈Fj

Cor(f, g)
} (4)

This takes p − (j − 1) correlations in each step. For the whole MRMR/CFS
process of selecting k from p features

p+
k−1∑
i=1

(p− i) = p · k − k2 − k

2
(5)

correlations must be computed. Variants of the method like, e.g., [7] tried to
improve the stability of MRMR by introducing a weighting parameter α for the
ratio of relevance and redundancy. Tuning this parameter even increases the
overall runtime. The same holds for the approach [12], which evaluates together
those pairs of features which are higher correlated than some δ, or for Fast
Correlation-based Filter (FCBF) [17], which discards all features with relevance
< δ. Hence, MRMR/CFS is promising but suffering from a lack of stability.

Ensemble methods A high variance negatively effects prediction algorithms
(classification & regression) as well as feature selection schemes. Ensemble meth-
ods like Bagging [2] or Boosting [6] reduce variance. Parallel ensembles, e.g. Bag-
ging, do so by repeating the algorithm on different subsamples or bootstrapped
samples of the input data. This increases the stability of the set of selected fea-
tures [13, 9] and - in some cases - even reduces the prediction error [16]. Saeys
et al. [13] showed that (bagged) ensembles of symmetrical uncertainty weighting,
Relief, SVM-RFE or RF delivered more stable feature selections than the non-
ensembled counterparts, but did not increase classification performance. (For
RF accuracy even decreased.) The major problem with Bagging are the e-times
repetition for ensembles of cardinality e. This increases runtime considerably.

3 Speeding up Ensembles

We now have advantages and shortcomings of the methods which we want to
enhance, namely MRMR/CFS (being unstable) and ensemble methods (being
too slow). The basis for our algorithm is the ”split-sum trick” going back to the
displacement law of statistics, the latter of which we apply first. It helps to com-
pute the Cor(x, y) in one pass for any two features. Thanks to the displacement
law, cf. (6), the measures (1) to (3) can be rewritten as sums of independent
terms. We use Pearson’s linear correlation as an example, but the other mea-
sures can be split analogously: Since the variance of a variable X can be written
as

V ar(X) = E((X − E(X))2) = E(X2)− (E(X))2 (6)



the variance- and covariance-terms now only contain sums of computationally in-
dependent terms. Pearson’s linear correlation can be computed in only one pass
over the data for each feature without prior computation of the mean values
of each feature. Eq. (1) and (3) can similarly be split into sums of indepen-
dent terms. This fact is used by our Inner Ensemble method and its further
enhancement, the Fast Ensemble.

Inner Ensembles Correlation measures like Pearson’s linear correlation are
very sensitive to outliers [10]. This has a negative effect on the stability of the
selected feature set. Our first method, the Inner Ensembles, increases the ro-
bustness of the correlation measure by performing a parallel ensemble of e cor-
relations, instead. The correlation is calculated for e parts on subsets of the
examples, each part leaving out 1

e of the data - similar to e-fold cross-validation.
In contrast to cross-validation, the left-out fraction of the data is not used, at
all. The average of the e correlations gives us a more robust correlation estimate.

Let Fj denote the set of selected features in step j ∈ {1..k} of MRMR/CFS.
The MRMR/CFS algorithm first picks the feature which has the highest cor-
relation with the label and so is most relevant. This takes p calculations of
feature-label-correlation F1 = {argmaxfi (Cor(fi, y))} with i ∈ [1, p]. Usually,
for ensembles of size e, this would increase runtime of MRMR/CFS by the factor
e to e · p · k− (k2− k)/2) correlations to compute. Now, we use that the eqs. (1),
(2) and (3) can all be split into sums of sums like

n∑
i=1

hi =

m1∑
i=1

hi +

m2∑
i=m1+1

hi + · · ·+
n∑

i=me+1

hi =
e∑

j=1

 j n
e∑

i=1+(j−1)n
e

hi

 (7)

for equally sized parts and arbitrary terms hi. This allows us to compute these
sums for all e intervals

[
(j − 1)ne + 1, j n

e

]
separately. The final correlation of each

part i ∈ [1, e] of the ensemble is then calculated by using all but the ith partial
sums. There is virtually no extra runtime apart from e times adding up the
partial sums within Algorithm 1. The memory need increases by factor e which
is very small, because Pearson’s linear correlation only needs five accumulator
variables for the sums; F-test and mutual information only need 1 + 3 · |f1| and
3 · |f1| · |f2| variables, respectively, where |f1| and |f2| are the number of distinct
values of the features f1 and f2. Algorithm 1 exemplarily shows pseudo-code for
Pearsons’s linear correlation returning the correlation values for all parts in one
pass over the data. For F-Test (1) and MI (3) the procedure is similar.

Fast Ensembles Doing the calculations on diverse subsets of the data and
using the split-sum trick in the Inner Ensembles way is extremely fast, but it
increases the stability of selected feature sets only marginally, when used on each
single correlation step, cf. Section 4. Our 2nd method, Fast Ensemble, builds
an ensemble of the whole selection process, instead of stabilizing each single
correlation. We dramatically reduce runtime of the full ensemble by applying
the same split-sum trick.



If a correlation between two features is computed for one part of the ensemble,
their correlations can be computed with practically no overhead for all other
parts of the ensemble (cf. Algorithm 1). As opposed to the Inner Ensemble,
here, the partial correlation results are not combined, but cached for later use.
Just one pass over the examples is needed: For every ith part of the ensemble,
the ith partial sums are left out when aggregating the sums to a correlation
measure. Hence, for every two features or a feature-class combination, only one
pass over the examples is needed, no matter in how many parts of the ensemble
they appear. Where a full ensemble of MRMR/CFS needs e · p passes over the
examples in order to select a first feature fi,1 for e parts of the ensemble, our
method does this just once. For every further feature fi,j in all parts of the
ensemble, only those feature correlations need a pass over the examples which
were not already considered in any other part of the ensemble.

Algorithm 1 Pearson Correlation Ensemble

1: Input: Numerical variables X,Y , ensemble size e, number of examples n
2: Init arrays of size e for split-sums: Cor[],e n[],e x[],e xx[],e y[],e yy[],e xy[]
3: Init overall sums: E X=0; E Y=0; E XY=0; E XX=0; E YY=0
4: j=0; {index for the ensemble parts 1..e}
5: for i = 1 to N do {Iterate over all examples, build overall & split-sums}
6: e x[j]+= X[i]; e y[j]+= Y[i]; e xy[j]+= X[i]*Y[i]; e xx[j]+= X[i]2; e yy[j]+= Y[i]2

7: E X+=X[i]; E Y+=Y[i]; E XY+=X[i]*Y[i]; E XX+=X[i]2; E YY+=Y[i]2

8: e n[j]++; j=(j+1) mod e;
9: end for
10: for j=1 to e do {Iterate over all ensemble parts: calculate correlation}
11: denom=sqrt(abs((E XX-e xx[j]- (E X−e x[j])2

n−e n[j]
) · (E YY-e yy[j]- (E Y −e y[j])2

n−e n[j]
)))

12: Cor[j]= (E XY-e xy[j]-E X·E Y
n−e n[j]

) / denom
13: end for
14: return “average” over Cor[]

Algorithm 2 Fast Ensemble of MRMR/CFS

1: Input: Set of all features F, desired dimension k, size of the ensemble e, label y
2: for i = 1 to e do {For all parts of the ensemble}
3: Fi = {fi,1 ∈ F | max Cor(fi,1, y)[i]}
4: for j=2 to k do {Iteratively add best feature}
5: Fi = Fi ∪ {fi,j ∈ F\Fi | max (Cor(fi,j ,y)[i] /

∑
g∈Fi

Cor(fi,j , g)[i])}

6: end for
7: end for
8: return “average” over all Fi

9: Cor(a,b) first looks in cache. If measure for (a,b) or (b,a) was not yet cached,
chooses appropriate measure, e.g. Alg. 1, and puts the resulting array into cache.



(X1,X2),(X4,X2),(X5,X2),

(X1,X3),(X4,X3),(X5,X3)

(X1,X5),(X2,X5),

(X3,X5),(X4,X5)

(X1,X2),(X3,X2),(X5,X2),

(X1,X4),(X3,X4),(X5,X4)
X1
X2
X3
X4
X5

=> F ={X1, X2, X4}

(X1,Y),(X2,Y),(X3,Y),(X4,Y),(X5,Y)
(X1,X2),(X3,X2),

(X4,X2),(X5,X2)

*

*

*

X1
X2
X3
X4
X5

*
*

*

X1
X2
X3
X4
X5 *

*

*

12 correlations

=> F ={X2, X3, X4}

=> F ={X1, X4, X5}

2 new correlations

1 new correlation

(X1,Y),(X2,Y),(X3,Y),(X4,Y),(X5,Y)

(X1,Y),(X2,Y),(X3,Y),(X4,Y),(X5,Y)

(X1,X2),(X3,X2),

(X4,X2),(X5,X2)

(X1,X5),(X2,X5),(X3,X5),

(X1,X4),(X2,X4),(X3,X4)

{X2}

{X2,X4}

{X2}

{X2,X3}

{X5}

{X4,X5}

Part 1

Part 2

Part 3

1

2

3

Fig. 1: Fast Ensemble: A simple example with k = 3, n = 5, e = 3. The dashed
lines in the arrows represent the subset of the examples which is left out when
estimating the correlation. The correlation computations demanding a pass over
the data for split-sum calculation are highlighted.

Time-complexity directly depends on the diversity of the ensemble results.
If all parts of the ensemble return the same feature set, the needed correlations
have all been computed in the first part and the runtime is the same as for a
single feature selection. If, in contrast, the resulting feature sets of the feature
selections are disjoint, none of the feature pairs has been considered in other
parts of the ensemble and thus has not been cached. These extremes are rare.

A simple example of selecting 3 out of 5 features (X1 to X5), label Y , illus-
trates Fast Ensembles, cf. Fig. 1. The ensemble consists of three parts. After a
first calculation of the relevance of each feature, i.e. the correlation of Xi and Y ,
the relevance values are cached for each part. To estimate the feature with the
best relevance/redundancy ratio the correlations of X2 and the remaining four
features must be computed. X4 is chosen. In the last step the remaining features
must be compared to the newly added X4. This is repeated for all other parts.
Now relevance can be computed from the split sums already computed in the
first part. If Xi, Xj have been compared in an earlier part, their split-sums can
be reused. The resulting sets are then combined, e.g. via majority vote. Only 15
passes are needed instead of 36 without the split-sum trick.

Our algorithms conduct search in feature subset space like wrappers do. Yet,
unlike wrappers, the feature sets are not evaluated in long cross-validation runs
but with a fast filter approach. Unlike filters, feature interdependencies are still
considered. Hence, Inner and Fast Ensembles combine the advantages of wrap-
per and filter approaches. Note, that the inherent parallelism of the algorithms
speeds up computation additionally. Every correlation computation between two
features is independent of the other features. Thus, not only the parts of the en-
semble can be computed in parallel, but also all correlation computations. Only



completed calculations must be reported to some central instance which conducts
the search in feature subset space.

4 Evaluation

We evaluated the performance of our algorithm with respect to stability, ac-
curacy and runtime on nine publicly available datasets of a wide range of
problem settings and dimensionality (Table 1). For high repeatability plugin,
experiments, material and additional plots and figures are available at [1].

Stability We analyze how the produced feature sets differ under variation of the
input data. We compare our two methods Inner Ensemble and Fast Ensemble
to MRMR/CFS and a full ensemble of MRMR/CFS. All ensembles consist of
e = 20 parts. The stability of the full ensemble is only reported for completeness
as it technically does the same as our Fast Ensemble.

We use the Jaccard index of two feature-sets J(Fa, Fb) = |Fa∩Fb|
|Fa∪Fb| to mea-

sure the stability of the feature selection. Similar to [13] we draw ten subsets
from the example set like ten-fold cross-validation. On each of these subsets
a feature selection is computed. The overall stability is further defined as the
average of the Jaccard indices for all combinations of those feature selections:
J̄ = 2

l2+l

∑l
i=1

∑l
j=i+1 J(Fi, Fj), where l is the number of different feature se-

lections in the ensemble. The average over 10 runs are reported. Fig. 2 shows
exemplary results for the stability of the four feature selection methods depen-
dent on k, the number of features to select; see [1] for complete results.

The Fast Ensemble version clearly outperforms the standard MRMR/CFS,
whereas the Inner Ensemble shows nearly no visible improvement except for the
Leukemia dataset in Fig. 3.3. For the Leukemia dataset the mutual information
was used to measure relevance and redundancy. One can see that the inner
ensemble only effects nominal datasets. As it increases runtime only in O(1) we

Table 1: Data characteristics and significance of the difference between the sta-
bilities achieved by Fast Ensemble and plain MRMR for 10 and 20 features.
Values < 0.05 are highly significant.

Dataset p n Classes Data k = 10 k = 20

sonar 60 208 2 continuous 0.0085 0.0025
ionosphere 34 351 2 continuous 0.022 0.19951
musk 166 476 2 continuous 3.1 · 10−6 1.4 · 10−8

lung 325 73 7 nominal 4.1 · 10−7 4.0 · 10−14

h.w. digits 64 3823 10 continuous 0.082 0.0058
colon 2000 62 2 nominal 1.4 · 10−9 1.1 · 10−6

lymphoma 4026 96 9 nominal 1.2 · 10−10 4.4 · 10−14

leukemia 7070 72 2 nominal 2.6 · 10−11 1.9 · 10−15

nci60 9712 60 9 nominal 2.4 · 10−14 0.0
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Fig. 2: Stability of the four approaches, MRMR/CFS, Inner Ensemble, Fast En-
semble, and the full ensemble measured by the average Jaccard index (y-axis),
where k, the number of selected features, is the x-axis.

suggest using it for nominal datasets. As is clearly seen, our new Fast Ensemble
achieves the same performance as a full ensemble of the same size. The benefit
is the much smaller number of computations. The visible differences from 2
between methods are significant. We exemplarily report the p-Values for 10 and
20 features in Table 1. The only exception in p-values is selecting 20 features
from the ionosphere dataset, but this corresponds to the curve in Fig. 2.1. For all
datasets stability increases with larger k because the (possible) overlap between
subsets selected by different parts of the ensemble increases. The effect of the size
e of an ensemble on the selection stability was also investigated, cf. Fig. 3 and [1].
Too small an ensemble does not increase performance and too large an ensemble
degrades performance for small n. Stability increases with the number of selected
features, but in general a mid-sized ensemble with e ≈ 20 performs best for all k.
We also compared our split-sum based ensembles to classical bagged ensembles
of equal size. In 8 of 9 data sets Bagging gave less stable results.
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Fig. 3: Stability of the selected feature sets as a function of e (vertical axis) and
k (horizontal axis). Brightness indicates stability - the brighter the better.



Accuracy We analyze if a more stable feature selection benefits classification
accuracy on five different learning schemes: Näıve Bayes, 5-Nearest-Neighbors,
RF, a linear SVM, and Logistic Regression (LR) which all have different strengths
and weaknesses. We compare the standard MRMR/CFS approach (Plain) to our
Inner Ensemble and our Fast Ensemble algorithm. Accuracy was averaged over
10 runs of ten-fold cross-validation. SVM and LR were only applied to two-class
problems with continuous variables. Pairwise comparisons of the feature selection
methods summed up over all experiments gave the following wins/ties/losses:

Fast Ensemble vs MRMR/CFS : 884/52/634
Inner Ensemble vs MRMR/CFS : 785/55/730
Fast Ensemble vs Inner Ensemble: 849/50/671

Table 2 shows in more detail the effect of feature selection on classification
accuracy for all datasets. Feature selection was only performed on the training
set and not on the test set, as this would lead to far too optimistic results. In
7 of the 9 datasets accuracy increased, when a subset of the features was used
for prediction instead of all features. More detailed plots of and figures for all
datasets can be found in [1]. In general, results show that Fast Ensembles deliver
better results earlier (with less features) than MRMR/CFS, Except for the Musk
dataset, where all feature selections degraded performance.

Runtime Let us now compare the runtime of our new Fast Ensemble with a
standard ensemble of the same size. The overlap (number of features which two
sets have in common) can be calculated based on their size k and their Jaccard
index as ol(J̄ , k) = 2·J̄ ·k/(J̄+1). The average Jaccard index of the sets produced
by the parts of the ensemble is similar to the average Jaccard index measured
for Plain MRMR/CFS for inspecting stability. Considering a Fast Ensemble of
e parts we now sum up the average amount of correlations in the parts of the

ensemble. In the first part of the ensemble, all p · k − k2−k
2 correlations must

be computed. In the second part, there are no correlations needed for relevance
estimation, and for the redundancy check, only those features, which have not

Table 2: Accuracy by the number of times a method was superior to the others
in the order Fast/Inner/Plain. k varied between 1 and 50. Winner is set bold.

Dataset 5NN NB RF SVM LR

sonar 18/13/19 14/22/13 23/15/11 18/19/12 15/22/12
ionosphere 18/4/11 17/7/10 19/4/10 20/11/2 18/9/6
musk 4/17/29 2/27/21 14/6/7 21/13/16 18/9/20
lung 23/11/15 21/16/12 16/15/19
H.W. Digits 37/7/6 27/8/14 17/19/14
colon 23/14/13 16/20/10 8/22/18
leukemia 17/21/11 20/11/19 21/19/7
lymphoma 32/6/11 43/5/2 44/2/2
nci60 20/17/10 31/8/9 17/22/9



been added in the first part, must be correlated with the remaining k− ol(J̄ , k)
features. At this point, it is unclear whether these features are added at the end or
at the beginning of the selection process, i.e., whether the parts of the ensemble
differ at the end or the beginning of the selection process. This determines how
many features it is compared to and explains the imprecision of the estimate.

For a rough estimate assume the average probability that a feature f i in the
ith part has already been correlated to all other features in the part before is

Pk,J̄(f
i) =

i−1∑
m=1

ol(J̄ , k)

k
(1− Pk,J̄(f

m)) =
2J̄

J̄ + 1

i−1∑
m=1

(1− PJ̄(f
m)) =: PJ̄(f

i)

with PJ̄(f
1) = 0. As seen from eq. (5), in one part, there are on average p −

(k− 1)/2 correlations to compute. When multiplied with the probability of not
needing to compute the correlation and adding the initial relevance computation
this gives a total average runtime of

T (p, k, e, J̄) = p+ (k − 1)

(
p− k − 1

2

)(
e−

e∑
i=1

PJ̄(f
i)

)
(8)

under the assumption f i
j = f i

l , ∀j, l ∈ [1, k].
To give an empirical validation of this average case runtime estimation, Ta-

bles 3 and 4 show the number of correlations that must be computed depending
on k and e. We compare our approach with a standard ensemble of MRMR/CFS
of the same size. High variance and large p can decrease the overlap between the
ensemble parts, such increasing runtime as it is this overlap which speeds up
runtime of our approach. It is not possible to predict in which order features
are selected in different parts of the ensemble. This puts more variance to the
number of needed correlations and makes it harder to predict those numbers.
Nonetheless, eq. (8) seems to give a good estimate on the average case of corre-
lation computations.

5 Conclusion

We presented two new algorithms towards selecting a maximum relevant and
minimum redundant feature set. Our algorithms are more stable than the ex-
isting MRMR/CFS approach and much faster than a standard ensemble of
MRMR/CFS. The speed-up is due to a faster computation of Cor(f, f ′) based
on the displacement rule and due to caching redundancy calculations from par-
titions. We showed that our method is well suited for feature selection on high-
dimensional data as it is more robust against high variance and outliers than the
single version. For the choice of e = 20 our algorithm is 1.4 to 19.7 times faster
than a usual ensemble of MRMR/CFS.

Our methods do not rely on Mutual Information, Pearson’s correlation, or
the F-Test, alone. They can make use of any measure of similarity which can be
split into sums. The split-sum-trick could also speed-up, e.g., Saeys’ bagged SU
[13], which builds upon MI, when replacing Bagging by our subset splits.



Table 3: Runtime measured by the number of passes over the data for a standard
ensemble of MRMR/CFS, our Fast Ensemble method, the speed gain and the
estimated runtime. Results for the Ionosphere and Lung datasets. Ionosphere
only contains 34 features. See [1] and Table 4 for more results.

Ionosphere Lung

k e Fast Estimated Standard Gain Fast Estimated Standard Gain

10 5 405 504 1,475 3.64 12,505 11,578 16,025 1.28
20 5 567 587 2,450 4.32 20,844 17,548 31,550 1.51
30 5 594 641 2,925 4.92 26,410 19,937 46,575 1.76
40 5 29,322 22,228 61,100 2.08
50 5 32,472 23,920 75,125 2.31

10 10 424 511 2,950 6.96 16,929 17,342 32,050 1.89
20 10 550 587 4,900 8.91 24,055 20,831 63,100 2.62
30 10 595 641 5,850 9.83 29,539 21,087 93,150 3.15
40 10 31,239 22,716 122,200 3.91
50 10 33,274 24,107 150,250 4.52

10 20 424 511 5,900 13.92 22,099 21,807 64,100 2.90
20 20 540 587 9,800 18.15 27,550 21,576 126,200 4.58
30 20 595 641 11,700 19.66 30,820 21,158 186,300 6.04
40 20 32,269 22,727 244,400 7.57
50 20 33,669 24,109 300,500 8.93

Table 4: Runtime measured by the number of passes over the data for a standard
ensemble of MRMR/CFS, our Fast Ensemble method, the speed gain and the
estimated runtime. Results for the Colon and Lymphoma datasets. See [1] and
Table 3 for more results.

Colon Lymphoma

k e Fast Estimated Standard Gain Fast Estimated Standard Gain

10 5 61,535 47,697 99,775 1.62 176,198 170,514 201,075 1.14
20 5 104,622 64,376 199,050 1.90 354,398 349,559 401,650 1.13
30 5 145,299 94,289 297,825 2.05 526,680 488,337 601,725 1.14
40 5 183,629 119,446 396,100 2.16 677,766 590,451 801,300 1.18
50 5 221,559 142,219 493,875 2.23 800,598 694,083 1,000,375 1.25

10 10 98,775 53,160 199,550 2.02 314,973 305,016 402,150 1.28
20 10 129,855 65,012 398,100 3.07 623,705 617,372 803,300 1.29
30 10 156,840 95,029 595,650 3.80 865,436 787,610 1,203,450 1.39
40 10 193,149 120,023 792,200 4.10 1,065,723 859,902 1,602,600 1.50
50 10 232,860 142,630 987,750 4.24 1,218,735 955,178 2,000,750 1.64

10 20 114,347 53,891 399,100 3.49 565,565 501,460 804,300 1.42
20 20 137,585 65,019 796,200 5.79 1,024,385 985,833 1,606,600 1.57
30 20 166,430 95,035 1,191,300 7.16 1,296,456 1,086,820 2,406,900 1.86
40 20 198,849 120,026 1,584,400 7.97 1,487,010 1,040,597 3,205,200 2.16
50 20 234,740 142,631 1,975,500 8.42 1,631,750 1,091,347 4,001,500 2.45
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Abstract. PC and TPDA algorithms are robust and well known pro-
totype algorithms, incorporating constraint-based approaches for causal
discovery. However, both algorithms cannot scale up to deal with high
dimensional data, that is more than few hundred features. This paper
presents hybrid correlation and causal feature selection for ensemble clas-
sifiers to deal with this problem. The number of eliminated features, ac-
curacy, the area under the receiver operating characteristic curve (AUC)
and false negative rate (FNR) of proposed algorithms are compared with
correlation-based feature selection (FCBF and CFS) and causal based
feature selection algorithms (PC, TPDA, GS, IAMB).

Key words: Feature selection, causal discovery, ensemble classification.

1 Introduction

Feature selection is an important pre-processing step to reduce feature dimen-
sions for classification and generally, can be divided into four categories [1],[2],[3].
Filter method is independent from learning method and uses measurement tech-
niques such as correlation and distance measurement to find a good subset from
entire set of features. Wrapper method uses pre-determined learning algorithm
to evaluate selected feature subsets that are optimum for the learning process.
Hybrid method combines advantage of both Filter and Wrapper method to-
gether. It evaluates features by using an independent measure to find the best
subset and then uses a learning algorithm to find the final best subset. Finally,
Embedded method interacts with learning algorithm but it is more efficient than
Wrapper method because the filter algorithm has been built with the classifier.

Feature selection does not usually take causal discovery into account. How-
ever, in some cases such as when training and testing dataset do not conform
to i.i.d. assumption, testing distribution is shifted from manipulation by exter-
nal agent, causal discovery can provide some benefits for feature selection under
these uncertainty conditions. Causality also can learn underlying data structure,
provide better understanding of the data generation process and better accuracy
and robustness under uncertainty [4].



Causal relationships are usually uncovered by Bayesian Networks (BNs) which
consist of a direct acyclic graph (DAG) that represents dependencies and inde-
pendencies between variable and joint probability distribution among a set of
variables [5].

Generally, the category of BNs can be divided into: Search-and-Score and
Constraint-Based approaches. In Search-and-Score approach, BNs search all pos-
sible structures to find the one that provides the maximum score. The second
approach, Constraint-Based, uses test of conditional dependencies and indepen-
dencies (CI) from the data by estimation using G2 statistic test or mutual in-
formation, etc. Constraint-Based algorithms are computationally effective and
suitable for high dimensional feature spaces. PC algorithm [6], is a pioneer, pro-
totype and well-known global algorithm of Constraint-Based approach for causal
discovery. Three Phase Dependency Analysis (TPDA or PowerConstructor) [7]
is another global Constraint-Based algorithm that uses mutual information to
search and test for CI test instead of using G2 Statistics test as in PC algo-
rithm. However, both PC and TPDA algorithm use global search to learn from
the complete network and can not scale up to more than few hundred features
(they can deal with 100 and 255 features for PC and TPDA, respectively) [8].
Recently, many Markov Blanket-based algorithms for causal discovery have been
studied extensively and they have ability to deal with high dimensional feature
spaces such as GS [9], MMMB, IAMB [8] and HITON [5] algorithms.

An ensemble classifier or multiple classifier system (MCS) is another well-
known technique to improve system accuracy [10]. Ensemble combines multiple
base classifiers to learn a target function and gathers their prediction together.
It has ability to increase accuracy by combining output of multiple experts to
reduce bias and variance, improve efficiency by decomposing complex problem
into multiple sub problems and improve reliability by reducing uncertainty. To
increase accuracy, each classifier in the ensemble should be diverse or unique
such as starting with different input, initial weight, random features or random
classes [11].

The main objective of this paper is to find algorithm that can scale up PC
and TPDA algorithms to deal with high dimensional data. We propose analysis
of hybrid correlation and causal feature selection for ensemble classifiers in terms
of number of eliminated features, average percent accuracy, the area under the
receiver operating characteristic curve (AUC) and false negative rate (FNR).

2 Theoretical Approach

In our research, hybrid algorithm of correlation and causal feature selection is
compared with Fast Correlation-Based Filter (FCBF), Correlation-based Fea-
ture Selection with Sequential Forward Floating Search direction (CFS+SFFS),
and with causal feature selection algorithms (PC, TPDA, GS and IAMB) using
Bagging (described in Section 2.2).



2.1 Feature Selection

2.1.1 Correlation-based Redundancy and Relevance Analysis The con-
cept of selecting optimal subset from whole features is presented in Figure 1 [12].
where I is irrelevant feature, II is weakly relevant and redundant feature, III is
weakly relevant but non redundant feature. IV is strongly relevant feature and
III+IV are optimal subset.

Fig. 1. Optimal Subset

Optimal subset should include all strongly relevant features, subset of weakly
relevant features that have no redundancy and none of the irrelevant features.

Table 1 shows the summary analysis of redundancy and relevancy analysis
for correlation-based [12], causal-based [4] and proposed hybrid correlation and
causal feature selection. Markov Blanket (MB(T)) of target or class (T) is the
minimal set of conditional features that all other features are probabilistically
independent of T. It consists of the set of parents, children and spouses of T.
Approximate Markov Blanket is explained section 2.1.1 a.

Table 1. Summary analysis of correlation, causal and proposed hybrid correlation and
causal feature selection for redundancy and relevance analysis.

Relation Correlation-Based Causal-Based Hybrid algorithm

Strongly relevant SUi,c = 1 Features in Features in
Markov Blanket Markov Blanket

Weakly relevant does not has approximate connected connected
without redundant features Markov Blanket to classes to classes

Weakly relevant has approximate connected has approximate
with redundant features Markov Blanket to classes Markov Blanket

Irrelevant SUi,c = 0 disconnected disconnected
to classes to classes

a) Fast Correlation-Based Filter (FCBF). FCBF [12] algorithm has two
stages: relevance analysis and redundancy analysis.



Relevance Analysis. Correlation can be measured by using Symmetrical Un-
certainty (SU).

SU(X, Y ) = 2
[ IG(X |Y )

H(X) + H(Y )

]
(1)

IG(X |Y ) = H(X)−H(X |Y ) (2)

H(X) = −
∑

i

P (xi)log2P (xi) (3)

where IG(X |Y ) is the Information Gain of X after observing variable Y .
H(X) and H(Y ) are the entropy of variable X and Y , respectively. P (xi) is the
probability of variable x.

SU is the modified version of Information Gain that has range between 0
and 1. FCBF removes irrelevant features by ranking correlation (SU) between
feature and class. If SU between feature and class equal to 1, it means that this
feature is completely related to that class. On the other hand, if SU is equal to
0, the features are irrelevant to this class.

Redundancy analysis. Redundant features can be defined from meaning of
predominant feature and approximate Markov Blanket. In Yu and Liu (2004)
[12], a feature is predominant (both relevant and non redundant feature) if it
does not have any approximate Markov Blanket in the current set.

Approximate Markov Blanket: For two relevant features Fi and Fj (i 6= j),
Fj forms an approximate Markov Blanket for Fi if

SUj,c ≥ SUi,c and SUi,j ≥ SUi,c (4)

where SUi,c is a correlation between any feature and the class. SUi,j is a
correlation between any pair of feature Fi and Fj (i 6= j).

b) Correlation-based Feature Selection (CFS). CFS [13] is one of well-
known techniques to rank the relevance of features by measuring correlation
between features and classes and between features and other features.

Given number of features k and classes c, CFS defined relevance of features
subset by using Pearson’s correlation equation

Merits =
krkc√

k + (k − 1)rkk

(5)

where Merits is relevance of feature subset, rkc is the average linear correla-
tion coefficient between these features and classes and rkk is the average linear
correlation coefficient between different features.

Normally, CFS adds (forward selection) or deletes (backward selection) one
feature at a time, however, in this research, we used Sequential Forward Floating
Search (SFFS) [14] as the search direction.



2.1.2 Causal Discovery Algorithm. In this paper, two standard constraint-
based approaches (PC and TPDA) and two Markov Blanket based algorithms
(GS, IAMB) are used as causal feature selection methods. In the final output of
the causal graph from each algorithm, the unconnected features to classes will
be considered as eliminated features.

a) PC Algorithm PC algorithm [6],[4] is the prototype of constraint-based
algorithm. It consists of two phases: Edge Detection and Edge Orientation.

Edge Detection : the algorithm determines directed edge by using condition-
ally independent condition. The algorithm starts with:

i) Undirected edge with fully connected graph.

ii) Remove a share direct edge between A and B (A−B) iff there is a subset
F of features that can present conditional independence (A, B|F ).

Edge Orientation: The algorithm discovers V-Structure A−B −C in which
A− C is missing.

i) If there are direct edges between A − B and B − C but not A − C, then
orient edge A→ B ← C until no more possible orientation.

ii) If there is a path A→ B − C and A− C is missing, then A→ B → C.

iii) If there is orientation A→ B → ...→ C and A− C then orient A→ C.

b) Three Phase Dependency Analysis Algorithm (TPDA) TPDA
or PowerConstructor algorithm [7] has three phases: drafting, thickening and

thinning. In drafting phase, mutual information of each pair of nodes is calculated
and used to create a graph without loop. After that, in thickening phase, edge
will be added when that pair of nodes can not be d-separated. (node A and B
are d-separated by node C iff node C blocks every path from node A to node
B [15].) The output of this phase is called an independence map (I-map). The
edge of I-map will be removed in thinning phase if two nodes of the edge can be
d-separated and the final output is defined as a perfect map [7].

c) Grow-Shrink algorithm (GS) GS [9] algorithm consists of two phases,
forward and backward.

Forward phase : GS statistically ranks features by using the strength of as-
sociation with target or class (T) given empty set. After that the next ordering
feature which is not conditionally independent from class T given current Markov
Blanket (CMB) will added into CMB.

Backward phase : Identify false positive nodes and remove them from CMB.
At this stage, CMB = MB(T ). Finally, a feature X will be removed from CMB
one-by-one if that feature X is independent of class T given the remaining CMB.

d) Incremental Association Markov Blanket Algorithm. (IAMB)
IAMB [8] is one of Markov Blanket detection algorithms using forward selection
followed by removing false positive node. IAMB has two phases, forward and
backward.

Forward phase : In forward selection phase, the algorithm starts with empty
set in CMB, then adding features which maximizes a heuristic function f(X ; T |CMB).
A feature member in MB(T) will not return zero value of this function.

Backward phase : False positive nodes will be removed from CMB by using
condition independent testing of class T given the rest CMB.



2.2 Ensemble Classifier

Bagging [16] or Bootstrap aggregating is one of the earliest, simplest and most
popular methods for ensemble based classifiers. Bagging uses Bootstrap that
randomly samples with replacement and combines with majority vote. The se-
lected data is divided to m bootstrap replicates and randomly sampled with
replacement. Each bootstrap replicate contains, on average, 63.2 % of the origi-
nal dataset. Final output will be selected from majority vote from all classifiers of
each bootstrap replicate. Bootstrap is the most well-known strategy for injecting
randomness to improve generalization performance in multiple classifier systems
and provides out-of-bootstrap estimate for selecting classifier parameters [10].
Randomness is desirable since it increases diversity among the base classifiers,
which is known to be a necessary condition for improved performance. However,
there is an inevitable trade-off between accuracy and diversity known as the
accuracy/diversity dilemma [10].

3 Experimental Setup

3.1 Dataset

The datasets used in this experiment were taken from Causality Challenge [17]
and details of each dataset are shown in Table 2.

Table 2. Datasets.

Dataset Sample Features Classes Missing Values Data type

LUCAS 2000 11 2 No Numeric (binary)

LUCAP 2000 143 2 No Numeric (binary)

REGED 500 999 2 No Numeric (discrete)

CINA 16033 132 2 No Numeric (discrete)

SIDO 12678 4932 2 No Numeric (binary)

3.2 Evaluation

To evaluate feature selection process we use four widely used classifiers: Naive-
Bayes(NB), Multilayer Perceptron (MLP), Support Vector Machines (SVM) and
Decision Trees (DT). The parameters of each classifier were chosen as follows.
MLP has one hidden layer with 16 hidden nodes, learning rate 0.2, momentum
0.3, 500 iterations and uses backpropagation algorithm with sigmoid transfer
function. SVM uses polynomial kernel with exponent 2 and the regularization
value set to 0.7. DT uses pruned C4.5 algorithm. The number of classifiers in
Bagging is varied from 1, 5, 10, 25 to 50 classifiers. The threshold value of FCBF



algorithm in our research is set at zero for LUCAS, REGED, CINA, SIDO and
0.14 for LUCAP dataset, respectively.

The classifier results were validated by 10 fold cross validation with 10 repeti-
tions for each experiment and evaluated by average percent of test set accuracy,
FNR and AUC.

Due to large number of samples and limitation of computer memory during
validation in CINA and SIDO datasets, the number of samples of both dataset
are reduced to 10 percent (1603 and 1264 samples, respectively) from the original
dataset.

For causal feature selection, PC algorithm uses mutual information (MI ) as
statistic test with threshold 0.01 and maximum cardinality equal to 2. In TPDA
algorithm, mutual information was used as statistic test with threshold 0.01 and
data assumed to be monotone faithful. GS and IAMB algorithm use MI statistic
test with significant 0.01 and provides output as Markov Blanket of the classes.

4 Experimental Result

Table 3 presents the number of selected features for correlation-based, causal
based feature selection and proposed hybrid algorithm. It can be seen that PC
and TPDA algorithms are impractical for high dimensional features due to their
complexity. However, if redundant features are removed, the number of selected
features will enable both algorithms to be practical as shown in proposed hybrid
algorithm. Nevertheless, for some datasets such as REGED, TPDA algorithm
might not be feasible because of many complex connections between nodes (fea-
tures).

Table 3. Number of selected features from each algorithm.

Dataset Original Correlation-Based Causal-Based Hybrid algorithm
Feature FCBF CFS PC TPDA GS IAMB H-PC H-TPDA H-GS H-IAMB

LUCAS 11 3 3 9 10 9 11 2 3 2 2

LUCAP 143 7 36 121 121 16 14 21 22 17 13

REGED 999 18 18 N/A N/A 2 2 18 N/A 2 2

CINA 132 10 15 132 N/A 4 4 5 7 10 9

SIDO 4932 23 25 N/A N/A 17 17 2 3 1 2

Figure 2 to 4 show the average percent accuracy, AUC and FNR of five
datasets for all classifiers. From average accuracy in figure 2, correlation-based
feature selection (FCBF, CFS) provides the best average accuracy. Hybrid cor-
relation and causal feature selection has better accuracy than original causal
feature selection. Hybrid method using PC algorithm (H-PC) has slightly lower
average accuracy than correlation-based feature selection but has the ability to



deal with high dimensional features. From figure 3, PC, CFS, TPDA and FCBF
algorithm provide the best and comparable AUC. Proposed hybrid algorithm
has lower AUC than both correlation and original causal-based algorithms. In
figure 4, H-PC has the lowest FNR. In all experiments, hybrid algorithm provides
lower FNR than original causal algorithm but still higher than correlation-based
algorithm.
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Fig. 2. Average Percent Accuracy of five datasets and four classifiers

Ensemble classifiers using Bagging slightly improves accuracy and AUC for
most algorithms. Bagging also reduces FNR for CFS, PC and TPDA algorithm
but provides stable FNR for the rest. After increasing number of classifiers to
5-10, the graphs of average accuracy, AUC and FNR all reach saturation point.

5 Conclusion

In this paper, hybrid correlation and causal feature selection for ensemble classi-
fiers is presented to deal with high dimensional features. According to the results,
the proposed hybrid algorithm provides slightly lower accuracy, AUC and higher
FNR than correlation-based. However, compared to causal-based feature selec-
tion, the proposed hybrid algorithm has lower FNR, higher average accuracy and
AUC than original causal-based feature selection. Moreover, the proposed hybrid
algorithm can enable PC and TPDA algorithms to deal with high dimensional
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features while maintaining high accuracy, AUC and low FNR. Also the underly-
ing causal structure is more understandable and has less complexity. Ensemble
classifiers using Bagging provide slightly better results than single classifier for
most algorithms. The future work will improve accuracy of search direction in
structure learning for causal feature selection algorithm.
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Abstract. In this paper, we propose another extension of the Random
Forests paradigm to unlabeled data, leading to localized unsupervised
feature selection (FS). We show that the way internal estimates are used
to measure variable importance in Random Forests are also applicable
to FS in unsupervised learning. We first illustrate the clustering perfor-
mance of the proposed method on various data sets based on widely used
external criteria of clustering quality. We then assess the accuracy and
the scalability of the FS procedure on UCI and real labeled data sets
and compare its effectiveness against other FS methods.

Keywords: Unsupervised learning, feature selection, Random Forest.

1 Introduction

The identification of relevant subsets of random variables among thousands of
potentially irrelevant and redundant variables is a challenging topic of pattern
recognition research that has attracted much attention over the last few years [13,
16, 24, 22]. In supervised learning, feature selection (FS) algorithms maximize
some function of predictive accuracy. But in unsupervised learning, we are not
given class labels. It becomes unclear which features we should keep as there are
no obvious criteria to guide the search. Intuitively, all features are not equally
important. Some of the features may be redundant, some may be irrelevant,
and some can even misguide clustering results. Broadly speaking, the FS in un-
supervised learning aims at finding relevant subsets of variables that produce
”natural” groupings by grouping ”similar” objects together based on some simi-
larity measure. Reducing the number of features increases comprehensibility and
ameliorates the problem that some unsupervised learning algorithms break down
with high dimensional data.

Databases have increased many fold in recent years. Important recent prob-
lems (i.e., DNA data in biology) often have the property that there are hundreds
or thousands of variables, with each one containing only a small amount of in-
formation. A single clustering model is known to produce very bad groupings
as the learning algorithms break down with high dimensional data. Clustering
ensembles is an effective solution to overcome the dimensionality problem and to
improve the robustness of the clustering [9, 27, 28, 8, 11]. The idea is to combine



the results of miltiple clusterings into a single data partition without accessing to
the original features. The strategy follows a split-and -merge approach: 1) con-
struct a diverse and accurate ensemble committee of clusterings, and 2) combine
the clustering results of the committee using a consensus function. Although
considerable attention has been given on the problem of constructing accurate
and diverse ensemble committee of clusterings, little attention has been given to
exploiting the multiple clusterings of the ensemble with a view to identify and
remove the irrelevant features.

The framework pursued in this article attempts to bridge the gap between
supervised and unsupervised FS approaches in ensemble learning. The way in-
ternal estimates are used to measure variable importance in the Random Forests
(RF) paradigm [2] have been influential in our thinking. In this study, we show
that these ideas are also applicable to unsupervised FS. We emphasize that RF
was already extended for unsupervized clustering by Breiman however we think
his approach suffers from many problems as explained in the sequel. In our pro-
posal, we extend the RF paradigm to unlabeled data by introducing a clustering
ensemble termed as RCE (for Random Cluster Ensembles). RCE combines both
data resampling (bagging) and random selection of features (random subspaces)
strategies for generating an ensemble of component clusterings. A combination
of these two main strategies for producing clustering ensembles leads to explo-
ration of distinct views of inter-pattern relationships. Many approaches can be
used to combine the multiple obtained partitions [11]. For sake of simplicity,
we will use the evidence accumulation technique proposed in [9] in our exper-
iments. The method consists of taking the co-occurences of pairs of patterns
in the same cluster as votes for their association. The co-association matrix of
patterns represents a new similarity measure between patterns. The final (con-
sensus) clustering is obtained by running a traditional average-link hierarchical
agglomerative algorithm on this matrix. Once the consensus clustering is ob-
tained, we select the relevant features locally in each final cluster based on the
out-of-bag importance measure discussed by Breiman [2]. Strictly speaking, our
method computes the feature relevance; the FS is performed afterwards by a
statistical test called the Scree Test [4]. Empirical results on UCI and real la-
beled data sets will be presented to answer the following questions: (1) Is our
FS for unsupervised learning algorithm better than clustering on all features?
(2) Is it competitive with other unsupervised FS methods? (3) How does the
performance degrade as more irrelevant variables are included?

2 Unsupervised FS background

The problem of unsupervised FS has attracted a great deal of interest recently.
Like in supervised FS, the methods can be divided into three categories, de-
pending on how they interact with the clustering algorithm: wrapper, embedded
and filter approaches. Wrapper methods perform a search in the space of feature
subsets, guided by the outcome of the clustering model. For that, they wrap
unsupervised FS process around a clustering algorithm. Typically, a criterion



is firstly defined for evaluating the quality of a candidate feature subset and
wrapper approaches aim to identify a feature subset such that the clustering
algorithm trained on this feature subset can achieve the optimal value of the
predefined criterion, such as normalized scatter separability (for k-means) [7] or
normalized likelihood (for EM clustering) [7] or DB-index [20]. Another example
is given by the algorithm described in [14]. It tries to search for a subset of all
features such that the clustering algorithm trained on this feature subset can
achieve the most similar clustering solution to the one obtained by an ensemble
learning algorithm. Furthermore, RF has been also extended to unlabeled data
leading to unsupervised learning. The idea is to construct an RF predictor that
distinguishes the observed data from suitably generated synthetic data [3, 26].
This method will be included in our experiments. In the aforementioned algo-
rithms, the candidate feature subsets are evaluated globally. Regardless of the
evaluation criteria, global FS approaches compute them over the entire dataset.
Thus, they can only find one relevant feature subset for all clusters. However, it
is the local intrinsic properties of data that counts during clustering [29]. As a
solution, authors in [29] proposed a localized FS algorithm for clustering. The
proposed algorithm computes adjusted and normalized scatter separability for
individual clusters and a sequential backward search is then applied to search
for the optimal feature subsets for each cluster. However this approach doest not
scale to high-dimensional data. Several important works have proposed embed-
ded formalisms using variable weighting to solve the problem of unsupervised
FS [10, 17]. For such approaches, the search for an optimal subset of features
is built into the clustering construction making these techniques specific of a
given learning algorithm. In contrast to wrapper and embedded approaches, fil-
ter methods discover the relevant and redundant features through analyzing the
correlation and dependence among features without involving any clustering al-
gorithms [19, 5]. The most common filter strategies are based on feature ranking.
Recently, [15] proposed a consensus unsupervised feature ranking approach that
combines multiple rankings of the full set of features into a single consensus one.
The ranking of features is obtained using their relevance measured by the linear
correlation coefficient and symmetrical uncertainty. Unfortunately, the authors
only report experimental results on very low-dimensional data sets.

3 RCE: Random Cluster Ensembles for Unsupervised FS

3.1 Building and combining multiple clustering solutions

Ensemble methods have been applied successfully in the area of unsupervised
learning to improve the accuracy and the robustness of clustering algorithms.
Resampling methods such as Bagging, was one of the first approaches that ex-
ploited this idea of ensemble learning. A group of clustering models was built
over a bootstrapped replicate of the former dataset. Finally, the last partition
was made by a consensus function over the set of partitions of each single clus-
tering model [27, 6]. Another trend appeared with the use of random subspaces.
Likewise bagging, random subspaces are another excellent source of clustering



diversity that provides different views of the data and allow to improve the
quality of unsupervised classification solutions [27, 28]. Since ensemble methods
are designed to improve performance of supervised and unsupervised classifica-
tion methods, it is reasonable to think that they can also be used to tackle the
unsupervised FS problem.

Contrary to all the previous described approaches, we propose to combine
both bagging and random subspaces for producing an ensemble of component
clusterings. RCE achieves a population of clustering solutions with the following
steps employed: a new training set is drawn, with replacement, from the original
data set. Then m features are randomly selected from the entire feature set
(leading to a partial view of the bootstrap data set) and a clustering solution
is obtained through executing the ”base” clustering algorithm on the selected
features. The same steps is repeated r times. There are many reasons for using
bagging in tandem with random feature subspaces. The first is that bagging
can be used to give estimates of both the variable importance and the pattern
proximities that will serve to build final consensus clustering from the ensemble
of clusterings. The second is that the ensemble method combines many weak
learners in an attempt to produce a strong learner [9]. Moreover, clustering in
the projected subspace allows us to mitigate the curse of dimensionality.

Assume a method h for constructing a clustering from any training set. Given
a specific data set D = {x1, . . . , xn} with M input variables, form r boostrap
training sets Dk (k ∈ {1, . . . , r}) in a random feature subspace (a mD view of the
bootstrap training set wherem =

√
M), and construct clusteringCk = h(x,Dk).

The way theseCk (k ∈ {1, . . . , r}) should be combined together is called the clus-
ter ensemble problem. Several feasible approaches are introduced in the literature
to solve the cluster ensemble problem. In this study, we adopt the average-link
consensus function based on co-association values between data, proposed in [9].
Proximity between pair of cases simply counts the fraction of clusters shared
by these objects in the initial partitions. Numerous similarity-based clustering
algorithms can be applied to the proximity (or similarity) matrix to obtain the
final partition. We chosed the Agglomerative Hierarchical Classification. The
number of clusters is the one that maximizes the average mutual information
criterion [27]. The overall framework is also applicable to any feasible consensus
clustering procedure.

3.2 Out-of-bag estimates to measure variable importance

In the RCE method, bagging is used in tandem with feature subspace to give
ongoing estimates of the feature importance of the combined ensemble of clus-
terings. A start on this problem is made by using internal out-of-bag (oob) esti-
mates, and verification by reruns using only selected variables. These estimates
are done out-of-bag, exactly as done in RF. After each clustering is constructed,
the values of the vth variable in the oob patterns are randomly permuted and
the oob data are re-assigned into clusters. This is repeated for v = 1, 2, . . . ,M .
At the end of the run, the oob cluster assignments for x, with the vth variable



permuted, is compared with the original cluster assignment of x1. The average
number of times the oob pattern x, with the variable v permuted, is misclassified
divided by the number of clusterings in the ensemble r is the local importance
score for variable v for this pattern. Now, the importance of the vth variable
for a given cluster (local) in the final consensus clustering is calculated as the
sum of all the importance values over all the patterns that fall into this par-
ticular cluster. Various methods can be employed to select the most important
local variables in view of their importance estimates, including: 1) statistical
tests (e.g., Scree Test [4]), 2) selecting a predefined percentage of variables [23]
3) the same recursive feature elimination scheme used with SVM [13]. In this
study, the Scree Test [4] is used. It consists in selecting the features preceding a
threshold value called the ”Scree”. The ”Scree” corresponds to the point where
the maximum deceleration of the curve occurs. See [4] for more details.

Our FS algorithm has several advantages when compared to other existing
unsupervised FS algorithms: First, as mentioned in [14], most existing unsu-
pervised FS algorithms are dimensionality-biased. For example, if the scatter
separability based FS algorithm is adopted, high-dimensional feature subsets
are selected more easily [7, 14]. The problem should be circumvented as RCE
operates on low-dimensional feature spaces. Second, as RCE leverages different
clustering solutions to measure feature importance, it is expected to improve the
robustness and stability of the feature subset compared to FS algorithms based
on a single clustering method. Third, the estimates of variable importance is
obtained from the oob patterns only. As noted by Breiman, it should therefore
be as accurate as using a test set of the same size as the training set. There-
fore, using the oob error estimate removes the need for a set aside test set. In
each bootstrap training set, about one-third of the instances are left out. There-
fore, the oob estimates are based on combining only about one-third as many
clustering models as in the ongoing main combination.

Given a data set D = {x1, . . . , xn} with M input features F = {f1, . . . , fM},
the overall proposed RCE framework for localized unsupervised FS is summa-
rized below:

1. Initialize an n× n matrix A and n×M matrix I to zero.
2. Form the kth bootstrap sample Dk = {x1

k, . . . , x
n
k} and the kth oob sample

Dk,oob = {x1
oob, . . . , x

noob

oob } such that Dk,oob = D \ Dk.

3. Create a random feature subset Fk = {f1
k , . . . , f

m
k } where m =

√
M .

4. Project Dk and Dk
oob onto feature subset Fk : Dk = Dk|Fk

and Dk,oob =
Dk,oob|Fk

.
5. Apply the clustering procedure h to the bootstrap learning set Dk and obtain

cluster labels Ck.
6. For each pair of observations (xi

k, x
j
k), update the matrix A as follow:

A(xi
k, x

j
k) := A(xi

k, x
j
k) +

1
r iff h(xi

k,Dk) = h(xj
k,Dk).

1 An oob instance x is assigned to the closest cluster, where the distance from an
instance to one cluster C is given by the distance between the instance and the
centroid of C.



7. Classify each oob data xi
oob into Ck and obtain its label Ck(i).

8. For each feature v in Fk randomly permute the values of v in oob data, re-
assign each xi

oob to a new label Ck
new(i) and update the matrix I as follow:

I(xi
oob, v) := I(xi

oob, v) +
1
r iff Ck

new(i) ̸= Ck(i).

9. Repeat Steps 2-8 r times and define a new dissimilarity matrixD, byD(i, j) :=
1−A(i, j).

10. Cluster the n original observations on the basis of this new dissimilarity
matrix using average-link hierarchical agglomerative algorithm and obtain
the combined partition C.

11. For each obtained cluster ck in C and each feature v in F measure the
importance of v in ck as imp(v, ck) =

∑n
i=1;xi∈ck

I(xi, v).
12. For each obtained cluster ck in C use the scree test to select the most im-

portant local variables.

4 Experiments

In this section, several benchmark (UCI) data sets [1] were selected to test the
performance of RCE (c.f. Table 1). It should be noted that most of these data sets
have frequently been used as benchmark data sets for testing the performance
of some state-of-the-art unsupervised FS algorithms which will be compared to
RCE. In addition, RCE is applied on two real gene expression data Ovarian [25]
and Leukemia [12] in order to assess its performance against data with a large
number of features and a small number of samples. The evaluation of the per-
formance of RCE will be conducted as follows: 1) quality of selected features
using k-means as the “base” clustering algorithm, 2) performances of RCE on
large feature/small sample size domains and 3) impact of noisy features on RCE
performances.

4.1 Evaluation using k-means as a base clustering algorithm

First, the k-means clustering algorithm was adopted as the “base” clustering
algorithm. The clusters number of the “base” k-means clustering algorithm was
set to the one optimizing Davies Bouldin index. The size of clustering ensembles
r was 200 in our experiments. In these experiments, the number and quality of

Table 1. Characteristics of used data sets.

Data set n M #labels

Ecoli 325 7 8
Iris 150 4 3
Lung 32 56 3
Vehicle 846 18 4
Wave 5000 40 3
Ovarian 54 1536 2
Leukemia 72 7129 2



the features selected by RCE was studied and compared with those obtained
by state-of-the-art unsupervised FS algorithms: the scatter separability wrapper
unsupervised FS algorithm [7], the DB-index wrapper unsupervised FS algo-
rithm [20], the clustering ensembles guided FS algorithm (CEFS) [14] and the
unsupervised RF FS algorithm [3]2. To make fair comparisons, the same exper-
imental approach (protocol and evaluation measure) in [14] was adopted here.
The quality of the features selected by each approach on the first four data sets
(which were used in [14]) were evaluated through executing k-means on them
and the clustering accuracy was returned as the quality of the selected features.
As in [14], accuracies of all clustering solutions were calculated by the Rand
Index method [21] and all experiments were executed for 20 independent runs
since k-means is very unstable3. On the other hand, since RCE provides a local
FS and for fair comparison, the feature subset considered as the union of all local
important features was considered as the final selected feature subset. Experi-
mental results are shown in Table 2. The accuracies of k-means on the features
selected by RCE are consistently higher than those obtained by k-means on all
the features. k-means on all the features achieved accuracies around 80.54% for
Ecoli data set, 86.32% for Iris data set, 63.25% for Lung data set and 64.17%
for Vehicle data set. However, k-means clustering algorithm on the features se-
lected by RCE achieves accuracies around 84.02% for Ecoli data set, 93.20% for
Iris data set, 68.27% for Lung data set and 66.98% for Vehicle data set. This
confirms the ability of our approach to improve the quality of clustering and
generate meaningful clusters. In addition, RCE always identifies a better feature
subset when compared with those obtained by the scatter separability wrapper
method, the DB-index wrapper algorithm, the clustering ensembles guided FS
algorithm (CEFS) and the unsupervised RF FS algorithm. Considering the un-
supervised RF approach, we note that the missclassfication rate for Ecoli, Iris,
Lung and Vehicule data sets are less than 50% indicating that unsupervised RF
is unable to distinguish between the two classes (original and synthetic).

4.2 Results on large feature/small sample size domains

In this section, we present the results of our RCE unsupervised FS technique
on large feature/small sample size domains. TheSelf-Organizing Map clustering
algorithm (SOM) is used as a base clustering algorithm in RCE. The unsuper-
vised FS techniques is assessed using 10-fold cross validation on two real data sets
Ovarian and Leukemia. The data set was split into ten disjoint subsets of equal
size (subsample contains 90% of the data for training and 10% for test). This
percentage was chosen because we use small sample datasets and thus cannot
discard too much data when building models. To demonstrate the effectiveness
of RCE, its performance was compared to those of our gold standard ensemble
supervised FS algorithm (RF). For each approach, the strategy explained be-
fore was used. Accuracy was used as the classification performance measure. For

2 We note that the number of tree in the RF classifier was set to 500
3 Results of three state-of-the-art approaches are given from [14].



Table 2. Experimental Results using k-means.

Ecoli data set Iris data set

Methods #features Accuracy(%) #features Accuracy(%)

All features 7.00±0.00 80.54±0.82 4.00±0.00 86.32±2.83
RCE 5.30±0.65 84.02±0.89 1.78±0.57 93.20±1.87
Unsupervised RF 1.00±0.00 74.57±0.57 1.00±0.00 88.38±6.30
CEFS 5.96±0.10 82.51±0.24 2.00±0.00 92.56±2.96
Scatter separability 6.40±0.63 80.74±0.13 3.00±0.00 87.35±5.34
DB-index 2.00±0.00 70.95±0.43 1.00±0.00 91.22±4.28

Lung data set Vehicle data set

Methods #features Accuracy(%) #features Accuracy(%)

All features 56.0±0.00 63.25±2.87 18.0±0.00 64.17±1.14
RCE 51.0±2.03 68.27±1.98 13,89±1.47 66.98±0.36
Unsupervised RF 53.0±0.00 62.12±3.45 10.0±0.00 64.56±1.34
CEFS 32.0±3.21 64.72±0.77 13.2±0.28 66.81±0.66
Scatter separability 40.4±1.79 64.28±0.27 13.0±0.00 64.19±1.99
DB-index 8.87±2.32 63.46±0.56 4.00±0.00 64.96±0.57

Table 3. Accuracy comparison for RCE and RF. Each entry in the table represents
the average accuracy using 10-fold cross-validation.

Data sets Consensus (all) Consensus (sel. RCE) RF (all) RF (sel. RF)

Ovarian 83.33 94.66 86.00 96.00
Leukemia 76.60 83.75 85.00 94.00

each fold, FS was performed using only the training part of the data, and each
approach (RCE and RF) was run again using the 1% best features returned by
its first run, as it was used in [23] and observed in these domains that only such
a small amount of features was relevant. Each model was then evaluated on the
test part of the data for each fold, and results were averaged over all 10 folds.
The results of this experiment are displayed in Table 3.

The returned results confirm again the usefulness of the FS strategy. The
results output by the consensus clustering of RCE on the selected features are
shown to be more relevant in view of the accuracy than that obtained by the
consensus clustering of RCE on all the features. On the other hand, regarding
accuracy values, the performances of RCE are acceptable compared to those
returned by the supervised FS approach (RF), that has access to labels during
the learning step.

4.3 Effect of number of noisy features on RCE performances

The wave data set [1] has 40 variables where the last 19 ones are totally irrel-
evant with mean 0 and variance 1. We experiment on this data set in order to
study the impact of adding noisy features on the performance of RCE, where
SOM algorithm is used as a base clustering algorithm. We first performed a FS
on the original data set; then 190 noisy variables were added sequentially (the 19
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irrelevant features duplicated 10 times) and the procedure was repeated several
times. At each step, the clustering quality of SOM on all features is compared
to the one returned from (1) clustering ensemble before FS (consensus with all
features), (2) SOM clustering on features selected by RCE (SOM with sel. fea-
tures) and (3) clustering ensemble on features selected by RCE (consensus with
sel. features). Comparisons were made using two performance metrics: (i) Pu-
rity rate used to evaluate the clustering accuracy and (ii) Adjusted Rand index
proposed by Hubert and Arabie [18] to assess the degree of agreement between
two partitions (the one obtained with the clustering algorithm (clusters) and
the correct predefined one (labels)) by considering relations upon patterns. Fig-
ures 1 and 2 show the evolution of Adjusted Rand and Purity values according
to the number of features. The following conclusions can be drawn from these
experiments. (1) The performance of a single application of SOM on all features
deteriorated markedly with an increasing number of noisy features especially
during the first steps. (2) The effectiveness of the clustering ensembles method
to achieve better clustering results than single method is confirmed. (3) The
pertinence of our RCE FS approach to offer an important preprocessing step
for unsupervised learning and its robustness to noisy features are confirmed.
It appears clearly that consensus with sel. features and SOM with sel. features
achieve better results than consensus with all features and a significant improve-
ment over SOM clustering on all features. Despite the degradation of consensus
with all features, the output selected features are all correct as there are no false
positives among the selected variables.

5 Conclusion

In this paper, the permutation accuracy importance measure in Random Forest
was extended to unlabeled data. We showed that the way internal estimates are
used to measure variable importance in Random Forests are also applicable to
FS in unsupervised learning. We first illustrated the clustering performance of



the proposed method on various data sets based on widely used external criteria
of clustering quality. We then assessed the accuracy and the scalability of the
FS procedure on UCI and real labeled data sets and compared its effectiveness
against powerful FS methods. Future substantiation through more experiments
on databases containing several thousands of variables are currently being un-
dertaken and comparisons with other unsupervised FS methods will be reported
in due course.

References

1. C.L Blake and C.J Merz. Uci repository of machine learning databases, 1998.

2. L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

3. L. Breiman and A. Cutler. Random Forests Manual v4.0, Technical report, UC
Berkeley, 2003.

4. R. B. Cattell. The scree test for the number of factors. Multivariate Behavioral
Research, 2:245–276, 1966.

5. M. Dash, K. Choi, P. Scheuermann, and H. Liu. Feature selection for clustering-a
filter solution. In International Conference on Data Mining, pages 115–122, 2002.

6. S. Dudoit and J. Fridlyand. Bagging to improve the accuracy of a clustering
procedure. Bioinformatics, 19(9):1090–1099, 2003.

7. J.G. Dy and C.E. Brodley. Feature selection for unsupervised learning. Journal of
Machine Learning Research, 5:845–889, 2004.

8. A.L.N. Fred and A.K. Jain. Data clustering using evidence accumulation. In 16th

International Conference on Pattern Recognition, pages 276–280, 2002.

9. A.L.N. Fred and A.K. Jain. Combining multiple clusterings using evidence ac-
cumulation. IEEE Transaction on Pattern Analysis and Machine Intelligence,
27(6):835–850, 2005.

10. H. Frigui and O. Nasraoui. Unsupervised learning of prototypes and attribute
weights. Pattern recognition, 37(3):567–581, 2004.

11. R. Ghaemi, N. Sulaiman, H. Ibrahim, and N. Mustapha. A survey: Clustering
ensembles techniques. World Academy Sc., Engineering and Technology, 38, 2009.

12. T.R. Golub, Slonim, D.K., P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov,
and H. Coller. Molecular classication of cancer: Class discovery and class prediction
by gene expression monitoring. Science, 286:531–537, 1999.

13. I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal
of Machine Learning Research, 3:1157–1182, 2003.

14. Y. Hong, S. Kwong, Y. Chang, and R. Qingsheng. Unsupervised feature selection
using clustering ensembles and population based incremental learning algorithm.
Pattern Recognition, 41(9):2742–2756, 2008.

15. Y. Hong, S. Kwong, Y. Chang, and Q. Ren. Consensus unsupervised feature
ranking from multiple views. Pattern Recognition Letters, 29(5):595–602, 2008.

16. J. Hua, W. Tembe, and E. Dougherty. Performance of feature-selection methods in
the classification of high-dimension data. Pattern Recognition, 42:409–424, 2009.

17. J. Huang, M. Ng, H. Rong, and Z. Li. Automated variable weighting.in k-means
type clustering. IEEE Trans Pattern Anal. Mach. Intell., 27(5):657–668, 2005.

18. L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2:193–
218, 1985.



19. P. Mitra, A. Murthy, and S.K. Pal. Unsupervised feature selection using fea-
ture similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(3):301–312, 2002.

20. M. Morita, R. Sabourin, F. Bortolozzi, and C.Y. Suen. Unsupervised feature se-
lection using multi-objective genetic algorithms for handwritten word recognition.
In International Conference on Document Analysis and Recognition, 2003.

21. W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical Association, 66:846–850, 1971.

22. S. Rodrigues de Morais and A. Aussem. A novel Markov boundary based feature
subset selection algorithm. Neurocomputing, 73:578–584, 2010.

23. Y. Saeys, T. Abeel, and Y. Van de Peer. Robust feature selection using ensemble
feature selection techniques. In ECML PKDD, pages 313–325, 2008.
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Abstract. Random projections are a suitable technique for dimension-
ality reduction in machine learning. In this work, we propose a novel
boosting technique that is based on embedding random projections in
a regularized gradient boosting ensemble. Random projections are stud-
ied from different points of view: pure random projections, normalized
and uniform binary. Furthermore, we study the effect to keep or change
the dimensionality of the data space. Experimental results performed on
synthetic and UCI datasets show that boosting methods with embedded
random data projections are competitive to AdaBoost and Regularized
Boosting.

Keywords: Random Projection, Gradient Boosting Machines, L2 Reg-
ularization.

1 Introduction

Recently, Random Projections (RPs) have been widely employed as dimension-
ality reduction technique. RPs are based on the idea that high dimensional data
can be projected into a lower dimensional space without significantly losing the
structure of the data. RPs can also be viewed as a tool for generating diversity
in the creation of an ensemble of classifiers. The underlying idea is the same used
in various new ensemble methods such as Rotation Forest [7] or Rotboost [8].
Using RPs, we can get multiple rotated views of the dataset. Diversity can be
generated by projecting data (i) into random subspaces, (ii) into random spaces
of the same dimension of the features spaces or (iii) superspaces of higher di-
mensionality than the original features spaces. In our work, we study different
techniques to apply random projections and apply them in the construction of
a gradient boosting ensemble.

From the point of view of incremental optimization, AdaBoost can be viewed
as an additive model fitting procedure that approximates the optimization of an
exponential loss function. Changing the exponential loss function with a least
square loss function yields to a new model of boosting, known as LsBoost [1].
Gradient Boosting Machines ( GBMs ) generalize this idea for any arbitrary
loss function. We embed RPs in LsBoost, projecting data into random spaces
at each step of the optimization process, thus searching for the classifier that



best fits the data in this new space. Nevertheless, the optimization of ill-posed
problems generally yields to poor results. For this reason, we also take into
account the effect of the L2 penalization term for regularization in the creation
of the ensemble.

We evaluate our approach on using RPs on synthetic datasets. In addition,
we evaluate the effect of both the regularization parameter and RPs on eight
datasets from UCI repository [10]. We compare our approach with AdaBoost
and LsBoost both with decision stumps as weak classifiers. Results show that,
for some kind of problems and in particular Xor-type problems, using RPs sig-
nificantly improves the classification accuracy. Furthermore, the use of the L2
regularization parameter is specially justified as a way to model noise and for
ensuring smoothness in the solutions.

This paper is organized as follows. In the next section, we briefly describe pre-
vious works about how RPs have been used in the machine learning community.
In Section 3 we first formulate the Gradient Boosting, then we present different
types of RPs and finally, we describe how we embed RPs into the GBMs. In
Section 4, we show the expetimental results and finally, in Section 5, we will
discuss the results and conclude.

2 Related Works on RPs

Arriaga and Vempala [2] propose an algorithmic theory of learning based on RPs
and robust concepts. They show how RPs are a suitable procedure for reducing
dimensionality while preserving the structure of the problem. In their work, they
proposed a very simple learning algorithm based on RPs mainly consisting in
two steps: randomly projecting the data in a random subspace and running the
algorithm in that space, taking advantage of working with a lower dimensionality.

Dasgupta [3] used RPs with Gaussian mixture models for classification of
both synthetic and real data. In his work, data are projected into a randomly
chosen d-dimensional subspace and the learning algorithm works in this new
smaller space achieving highly accurate classification results.

In the context of supervised learning, Fradkin and Madigan [4] compare the
performances of C4.5, Nearest Neighbours and SVM using both PCA and RPs as
dimensionality reduction technique. The results of their experiments are always
favorable to PCA.

3 Methods

In this section, first we present the formulation of both GBMs and RPs, and
then we explain our proposal to embed RPs into the GBMs.

3.1 Gradient Boosting Machines

In regression and classification problems, given a set of training sample {yi,xi}N1 ,
we look for a function F ∗(x) that maps x to y such that, over the joint distri-
bution of all (y,x)-values, the expected value of some specified loss function



Ψ(y, F (x)) is minimized. Usually, the function F (x) is member of parameterized
class of functions F (x; P) :

F (x; P) =
M∑
m=0

βmh(x; am), (1)

where P = {βm,am} M
0 is a set of parameters. Nevertheless, we can consider

F (x) evaluated at each point x to be a parameter and minimize :

Φ(F (x)) = Ey[Ψ(y, F (x)|x)], (2)

at each individual x, directly with respect to F (x). The solution is of the type :

F ∗(x) =
M∑
m=0

fm(x), (3)

where f0(x) is an initial guess, and {fm}M1 are incremental functions, known as
“steps” or “boosts”. Using steepest-descent, we get :

fm(x) = −%mgm(x), (4)

where, assuming that differentiation and integration can be interchanged,

gm(x) = Ey

[
∂Ψ(y, F (x))

∂F (x)
|x
]
F (x)=Fm−1(x)

(5)

and

Fm−1(x) =

m−1∑
i=0

fi(x). (6)

When the joint distribution of (y,x) is represented by a finite data sample,
Ey[·|x] cannot be evaluated accurately at each xi and, if we could perfom pa-
rameter optimization, the solution is difficult to obtain. In this case, given the
current approximation Fm−1(x) at the m-th iteration, the function βmh(x; a)
is the best greedy step towards the minimizing solution F ∗(x), under the con-
straint that the step direction h(x,am) be a member of the parameterized class
of functions h(x,a). One possibility is to choose the member of the parameter-
ized class h(x; a) that is most parallel in the N -dimensional data space with the
unconstrained negative gradient {−gm(xi)}N1 . In this case, it is possible to use
h(x,am) instead of the unconstrained negative gradient −gm(x). Weights %m
are given by the following line search :

%m = argmin%

N∑
i=1

Ψ(yi, Fm−1(xi) + %h(xi; am)) (7)

and the approximation updated in the following way :

Fm(x) = Fm−1(x) + %mh(x; am). (8)

In the special case where y ∈ {−1, 1} and the loss function Ψ(y, F ) depends on
y and F only through their product Ψ(y, F ) = Ψ(yF ), the algorithm reduces to

boosting. If the loss function is Ψ(y, F ) = (y−F )2

2 , gradient boosting produces
the stagewise approach of iteratively fitting the current residuals. The algorithm,
shown in Table 1, is called LsBoost.



Table 1. Algorithm: LsBoost

Step 1 F0(x) = argmin%
∑N
i=1 Ψ(yi, %)

Step 2 For m = 1 to M or meanwhile error ε do:
Step 3 ỹmi = yi − Fm−1, i = 1, N

Step 4 (%m, am) = argmina,%
∑N
i=1[ỹmi − %h(xi; a)]2

Step 5 Fm(x) = Fm−1(x) + %mh(xi; am)
Step 6 end For

3.2 Random Projections.

RPs are techniques that allow to reduce the dimensionality of a problem while
still retaining a significant degree of the structure of the data. The Johson-
Lindenstrauss Lemma [5] states that, given m points in Rn and 0 < γ < 1,
it is possible to project these points into a d-dimensional subspace, with d =
O( 1

γ2 log(m)). In this space, relative distances and angles between all pairs of
points are approximately preserved up to 1 ± γ, with high probability. If we
consider points as row-vectors of length n, the projection can be performed by
multiplying all the n points by an n × d matrix. The matrix should be one of
the following:

– P with columns to be d pure random orthonormal vectors.
– U−1,1 with each entry to be 1 or −1 drawn independently at random.
– N0,1 with each entry drawn independently from a standard Normal Distri-

bution N(0, 1).

While using these types of projections ensures that relative distances and angles
are approximately preserved, there is no guarantee that using other types of
matrices could preserve the structure of the data. Furthermore, if we would
project the data into a superspace, we can not rely on any theoretical results.

3.3 Random Projections in Boosting Machine.

In order to embed RPs in LsBoost, we perfom a slight modification of the original
LsBoost algorithm. In Step 4 of the algorithm, we can first search analitycally
for the optimal set of weighting values for each candidate classifier and after
select the classifier that best approximates the negative gradient with the corre-
spondent precomputed weight. Following the procedure described by Pujol [6],
we obtain that the values of all possible weights are given by :

%m =
ỹmA

N + λ
, (9)

where ỹm denotes the vector of residuals at step m, A is the matrix of training
examples, N is the number of training examples and λ is the L2 penalization
term. It has to be noted that, when λ = 0, regularization is not taken into ac-
count.
We define the RpBoost as Regularized Gradient Boosting where before consid-

ering the data by the weak classifiers they are projected by a transformation
representing by a specific RPs technique. Table 2 defines the algorithm to apply
the RpBoost method. In addition, we define :



Table 2. Algorithm: RpBoost

Initialize:
Select the type of projection in {P,N0,1, U−1,1}
Set the dimension of the random space
Set the random matrix Rp

Step 1 F0(x) = argmin%
∑N
i=1 Ψ(yi, %)

Step 2 For m = 1 to M do:
Step 3 ỹmi = yi − Fm−1, i = 1, N
Step 4 Set a new Rp
Step 5 Ar = A · Rp
Step 6 %m = ỹmAr

N+λ

Step 7 am = argmina
∑N
i=1[ỹmi − %mh(xi; a)]2

Step 8 Fm(x) = Fm−1(x) + %mh(xi; am)
Step 9 end For

Def. 1: Rpboost.sub as RpBoost working of data projected into a random
subspace;

Def. 2: Rpboost.same as RpBoost working of data projected into a random
space of the same dimension than the original feature space;

Def. 3: Rpboost.super as RpBoost working of data projected into a random
superspace.

4 Experiments and Results.

In order to test the performance of RpBoost, we perform several tests on syn-
thetic and real datasets from the UCI database. Results obtained with RpBoost
are compared with the results obtained with AdaBoost and LsBoost. In our set-
ting, we use decision stumps as weak classifiers. Dimension of the ensemble has
been set to 500 classifiers. In order to have a straightforward comparison, in all
the experiments, we set the dimension of the subspace and of the superspace
equal to the half and the double of the dimension of the features space, respec-
tively. RPs are performed using a matrix M ∈ {P,U−1,1, N0,1} as defined in the
Johnson-Lindenstrauss Lemma. The only difference is that we do not orthogonal-
ize column vectors of the P projections because an orthonormalization process
could slow down the training phase. In this section we show results obtained on
test patterns, UCI datasets and results about the effect of regularization in the
creation of the ensemble.

4.1 Test Patterns

Test patterns are synthetic bidimensional dataset proposed by Fawcett in [9]
for comparing performances of different classifiers. These patterns are randomly
generated on a 2-D grid of points, in [0:4] x [0:4] with a resolution of 0.05, yielding
6561 total points. The points are labeled based on where they fall in the pattern.
In Table 3 we give a description and some examples of the patterns. For each
test pattern, we use a stratified sample of 1000 points as training set and all the
distribution as testing set.



Table 3. Test Patterns.
Test Pattern Description Examples of Test Patterns

Sine Y = 0.84sin(1.78X)
Linear Y = 1.87 ∗X ± 1.74
Parity 9 parity circles

Annulus Annulus at (2.00, 2.00) Annulus

Parabolic Y =
(X−2)2

4∗0.25+1

Disjunctive 4 disjoint concave polygons
Polynomial Y = 1

2 ∗ (x− 2)3 + 1
2 ∗ (x− 2.2)2 + 2

Checkerboard 9 squares alternating classes Checkerboard

In Figure 1(a) we show the classification accuracy obtained with AdaBoost,
LsBoost and RpBoost using P projections. In Figure 1(b) we show the classi-
fication accuracy obtained with AdaBoost, LsBoost and RpBoost using U−1,1

projections. In Figure 2(a) we show the classification accuracy obtained with Ad-
aBoost, LsBoost and RpBoost using N0,1 projections and in Figure 2(b) their
respective numerical values. RpBoost.sub and RpBoost.same with N0,1 projec-
tions give always better classification accuracies than AdaBoost or LsBoost and,
in most of the cases, the performance increases considerably respect to AdaBoost
and LsBoost. One can observe that P projections are the only ones where su-
perpaces perform better than random subspace and random space of the same
dimension of the feature space. Finally, it has to be noted that all types of pro-
jection always outperform AdaBoost and LsBoost on the parity pattern and,
significantly, on the checkerboard pattern. These patterns represent XOR-type
problems.

(a) (b)

Fig. 1. Classification Accuracy on Test Patterns obtained with AdaBoost, LsBoost and
RpBoost with (a) P projections and (b) U−1,1 projections.

4.2 UCI Datasets

We compare the behaviour of RpBoost, AdaBoost and LsBoost on eight datasets
from UCI Repository in comparation with AdaBoost and LsBoost. All the re-
sults are 10-fold cross validated over two runs of cross validation. We use decision
stumps as week classifiers. The value of the regularization parameter is found
by 5-fold cross validation on the training set. We use the following datasets:



Ada Ls Sub Same Super
sine 0.983 0.937 0.986 0.985 0.84

linear 0.984 0.921 0.993 0.992 0.946
parity 0.824 0.884 0.966 0.968 0.738

annulus 0.83 0.828 0.963 0.965 0.73
parabolic 0.976 0.943 0.987 0.989 0.806

disjunctive 0.827 0.816 0.935 0.928 0.495
polynomial 0.984 0.951 0.988 0.99 0.892

checkerboard 0.694 0.854 0.955 0.957 0.62

(a) (b)

Fig. 2. (a) Classification Accuracy on Test Patterns obtained with AdaBoost, LsBoost
and RpBoost with N0,1 projections.
(b) Numerical Values of Accuracy on Test Patterns obtained with AdaBoost (Ada),
LsBoost (Ls), RpBoost.sub (Sub) , RpBoost.same (Same) and RpBoost.super (Super)
with N0,1 projections.

Monks-1, Monks-2, Monks-3, Bupa Liver Disorders, Tic-tac-toe, Breast cancer
Winsconwin ( original ), Ionosphere and Sonar. We choose to take into account
the three separated Monks problems. In Figure 3(a) we show the mean accu-
racy obtained with AdaBoost, LsBoost and RpBoost using P . In Figure 3(b)
we show the mean accuracy obtained with AdaBoost, LsBoost and RpBoost us-
ing U−1,1. In Figure 4(a) we show the mean accuracy obtained with AdaBoost,
LsBoost and RpBoost using N0,1 and in Figure 4(b) their respective numerical
values. N0,1 and U−1,1 projections give better classification accuracy with both
RpBoost.sub and RpBoost.same. On the other side, superspaces provide good
results only with P projections. For all projections and all space dimensions,
RpBoost outperforms significantly both AdaBoost and LsBoost in Monks-1 and
Monks-2 while , in Monks-3, only using N0,1 projection slightly improves the
performance. A slight improvement can be also noted in Breast for all projec-
tions. Sonar and Ionoshpere, the datasets having the highest dimensions, do not
benefit of the dimensionality reduction that RPs provide.

(a) (b)

Fig. 3. Classification Accuracy on Uci Datasets obtained with AdaBoost, LsBoost and
RpBoost with (a) P projections and (b) U−1,1 projections.



Ada Ls Sub Same Super
liver 0.708 0.742 0.692 0.698 0.547

breast 0.959 0.962 0.974 0.973 0.937
sonar 0.839 0.862 0.829 0.841 0.579

monks-1 0.746 0.746 0.796 0.794 0.625
monks-2 0.577 0.654 0.872 0.873 0.554
monks-3 0.953 0.963 0.913 0.919 0.756

tic-tac-toe 0.92 0.983 0.983 0.986 0.611
ionosphere 0.924 0.914 0.921 0.928 0.857

(a) (b)

Fig. 4. (a) Classification Accuracy on Uci Datasets obtained with AdaBoost, LsBoost
and RpBoost with N0,1 projections.
(b) Numerical Values of Accuracy on Uci Datasets obtained with AdaBoost (Ada),
LsBoost (Ls), RpBoost.sub (Sub) , RpBoost.same (Same) and RpBoost.super (Super)
with N0,1 projections.

Fig. 5. Testing Error for Different Values of the Regularization Parameter for Rp-
Boost.same using N0,1 in Monks-1 dataset

(a) (b)

Fig. 6. Testing Error for Different Values of the Regularization Parameter for (a) Rp-
Boost.same using U−1,1 in Liver dataset and (b) RpBoost.super using U−1,1 in Breast
dataset.



4.3 The effect of Regularization in RPs.

In order to study the effect of the regularization parameter λ in the construction
of the ensemble, we perform 10-fold cross validation over two run of cross vali-
dation for λ ∈ {1, 5, 10, 50, 100, 500, 1000, 5000, 10000} for each dataset and for
each type of projection. We can note the effect of the regularization parameter
at the initial phase in the costruction of the ensemble, before the convergence of
the optimization process. In Figure 5 we show the testing error of the Monks-1
dataset obtained in the construction of RpBoost.same using N0,1 projection for
λ ∈ {100, 1000, 10000}. In Figure 6(a) we show the testing error of the Liver
dataset obtained in the construction of RpBoost.super using N0,1 projection for
same values of λ. In Figure 6(b) we show the testing error of the Breast Dataset
obtained in the construction of RpBoost.super using U−1,1 projection for the
same values λ. The typical trend is shown in Figure 5 where we can see how the
optimization process converges slower when the value of λ increases. It is evident
how, in the former steps of the optimization process, λ influences the construc-
tion of the ensemble. With a proper value of λ, the testing error slows down
fastly and overfitting is prevented, as shown in Figure 6(a). Furthermore, we
note that for λ = 100, the ensemble overfits. This fact is evident in Figure 6(a)
and, in particular, in Figure 6(b) where we can see that only for λ = 10000 the
classifier does not tend to overfitting.

Table 4. Best classification accuracies obtained.

Test Patterns Uci Datasets
Test Pattern Accuracy Classifier Rp Dataset Accuracy Classifier Rp λ

Sine 98.6% RpBoost.sub N Liver 74.2% LsBoost - 1000
Linear 99.3% RpBoost.sub N Breast 97.6% RpBoost.super

RpBoost.sub
P
N

10000
10000

Parity 96.8% RpBoost.same N Sonar 86.2% LsBoost - 1000
Annulus 96.5% RpBoost.same N Monks-1 95.3% RpBoost.same N 1000
Parabolic 98.9% RpBoost.same N Monks-2 91.6% RpBoost.super P 1000

Disjunctive 93.5% RpBoost.sub N Monks-3 97.2% RpBoost.same N 1000
Polynomial 99.0% RpBoost.same N Tic-tac-toe 98.6% RpBoost.same U 10

Checkerboard 95.7% RpBoost.same N Ionosphere 92.8% RpBoost.same
RpBoost.sub

U
N

5000
1000

5 Discussion and Conclusions.

In this work, we propose to use random projections(RPs) to generate diversity
in the construction of regularized Gradient Boosting Machines. In particular, we
propose to embbed RPs in a modified version of LsBoost, that we call RpBoost.
At each step of the optimization process, we project the data in a new random
space and search for the classifier that best fits the data in this new space.
Spaces can be random subspaces, random spaces of the same dimension than
the original features space and random superspaces.

In Table 4, we report the best classification accuracies obtained for both test
patterns, on the right, and Uci Datasets, on the left. For each test pattern, we
report the accuracy, the classifier and the projections, denoted withRp, providing
that value of accuracy. For the datasets we report the accuracy, the classifier,
the projection, denoted with Rp, and the value of regularization parameter λ
providing that value of accuracy. Experimental results show that such type of



embedding, especially when RPs are drawn from a normal distribution, always
provides better accuracies in the classification of synthetic data. In particular,
RPs help significantly in the classification of Xor-type problems. Boosting with
decision stumps is unable to solve such type of problems. This fact is evident
in the checkerboard test pattern and in the Monks-1 and Monks-2 datasets. In
these cases, the performance of RpBoost is considerably improved compared to
the performance obtained with AdaBoost or LsBoost.

RpBoost always performs better than AdaBoost on synthetic data and, in
the majority of the cases, performs better than LsBoost on real data especially
when projections into subspaces or space of the same dimension than the original
spaces are used. With these spaces, RpBoost performs well with all types of
projections on most of the problems. The use of superspaces yields to better
classification accuracy only when the projection is drawn completely at random.
In this case, the performance appears to be slightly better than other types of
projections.

The regularization parameter influeces the creation of the ensemble, in par-
ticular, when high values of regularization are provided. Finding the “optimal”
value for the regularization parameter is crucial especially when there exists a
trend to overfitting. Obviously, in the cases where overfitting is present, using a
minor number of classifiers in the ensemble would have to provide better classi-
fication accuracy.

Finally, results clearly show that RpBoost is a promising technique and en-
courage in following in its study and, in particular, for more realistic problems.
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Abstract. We discuss an effective method for optimal ensemble tree se-
lection in random forests by trading-off diversity and accuracy of the en-
semble during the selection process. As the chances of overfitting increase
dramatically with the size of the ensemble, we wrap cross-validation
around the ensemble selection to maximize the amount of validation
data considering, in turn, each fold as a validation fold to select the trees
from. The aim is to increase performance by reducing the variance of the
tree ensemble selection process. We demonstrate the effectiveness of our
approach on several UCI and real-world data sets.

Keywords: Ensemble selection, random forest, decision trees

1 Introduction

Many advances in Machine Learning suggest using a set of individual classifiers,
or ensemble of classifiers, instead of a single predictor to address supervised
classification problems [15]. A large number of studies show that ensemble of
classifiers generally achieve better results compared to a single classifier in terms
of misclassification error [21, 11]. This improvement of performances relies on the
concept of diversity which states that a good classifier ensemble is an ensemble
in which the examples that are misclassified are different from one individual
classifier to another. However, the practical trade-off between diversity and ac-
curacy of the ensemble learning is still an open question in machine learning [6].
Dietterich [10] states that ”A necessary and sufficient condition for an ensemble
of classifiers to be more accurate than any of its individual members is if the
classifiers are accurate and diverse”. Many methods have been proposed to gen-
erate accurate, yet diverse, sets of models. Bagging [4], boosting [12], random
forests [5] and their variants are the most popular examples of this methodol-
ogy. Boosting and random forests are comparable and sometimes better than
state-of-the-art methods in classification and regression [8]

Random forests (RF) is a popular and very efficient algorithm, based on
model aggregation ideas, for both classification and regression problems [5]. The
principle of RF is to combine many binary decision trees built using several
bootstrap samples coming from the learning sample and choosing randomly at
each node a subset of explanatory variables. We assume the reader already is



familiar with details of the RF procedure. RF algorithm becomes more and more
popular and appears to be computationally effective and offers good prediction
performance in a lot of different applications [23]. Breiman sketches an expla-
nation of the good performance of RF related to the good quality of each tree
together with the small correlation (denoting high diversity) among the trees
of the forest. However, the mechanisms that explain this good performance of
RF are not clearly elucidated from a mathematical point of view [2]. Indeed,
it appears that using random selection of variables during the design stage of
RF makes individual trees rather weak predictors and does not always give the
expected performances. In addition, Breiman observed that above a certain num-
ber of trees, adding more trees does not allow to improve the performance [5].
Precisely he stated that for an increasing number of trees in the forest, the gen-
eralization error converges to a maximum. This result indicates that the number
of trees in a forest does not have to be as large as possible to produce an accurate
RF. On the other hand, pruning the irrelvant trees from huge forest is not as
easy as one may think. The tree selection process is subject to overfitting prob-
lems especially when the number of validation samples provided is not sufficient
[1, 9]. Also, we believe there is still room for improvement.

In this work, we discuss a simple framework called Fitselect to improve
RF under Ensemble pruning (also called Overproduce and Choose Paradigm).
The main idea of our approach is to perform classifier selection from an initial
pool of decision trees obtained with the RF algorithm while focusing on the
trade-off between accuracy and diversity of selected trees. The proposed method
works by evaluating the qualities of all obtained trees in terms of accuracy-
diversity trade-off on a hillclimb (validation) set, and selectively choosing part
of promising trees to build the final RF. To alleviate the overfitting problem,
we wrap cross-validation around ensemble selection to maximize the amount of
validation data considering, in turn, each fold as a validation fold. A distinct
tree selection is performed in each RF model. Improvements are demonstrated
on several classification data sets. Empirical results show that the selected subset
of trees performs similar to or better than the original ensemble (RF).

The rest of the paper is organized as follow: Section 2 reviews recent studies
on Ensemble pruning. Section 3 introduces the fitselect framework for improving
Random Forest. Experiments using relevant benchmarks and real data sets are
presented in Section 4.

2 Background of Ensemble Selection

The Ensemble Selection (also called Ensemble Pruning or Overproduce and
Choose paradigm) consists in selecting the ensemble members from a set of
individual classifiers that are subject to less resource consumption and response
time with accuracy that is similar to or better than the original ensemble. In su-
pervised classification, it has been known that selective classifier ensembles can
always achieve better solutions when compared with traditional ensemble meth-
ods [24, 19]. Given an ensemble of size M , the problem of finding the sub-set



of ensemble members with the optimal generalization ability involves search-
ing the space of 2M−1 non-empty sub ensembles, which was proved to be an
NP-complete problem [17]. Like ensemble learning approaches, the performance
gain of the ensemble pruning methods stems from the accuracy-diversity trade-
off, where choosing only the most accurate individual classifiers to form the sub
ensemble is theoretically unsound [24] and a strategy that only considers di-
versity for pruning does not always give the expected performances in terms of
misclassification error [19]

Many pruning algorithms exist for selecting good sub ensembles to reduce
the size of ensemble without compromising its performance. [24] formulated the
ensemble selection problem as a combinatorial optimization problem to look for
a subset of classifiers that has the optimal accuracy-diversity trade-off. Their
quadratic programming method was not significantly better than other metric-
based pruning heuristics though. Most of the pruning approaches that appeared
in the literature reorder the original ensemble members based on some prede-
fined criteria and select a subset of ensemble members from the sorted list [18,
16, 9]. A straightforward classifiers selection method is to rank the classifiers ac-
cording to their individual performance on a hillclimb (validation) set and pick
the best ones. The Choose Best heuristic described in consists in selecting the
L classifiers (among M initial classifiers) which possess the highest individual
accuracy. This heuristic does not take into account diversity. To this purpose,
Margineantu and Dietterich [18] use the Adaboost algorithm to train an en-
semble of decision trees which is pruned with different selection heuristics. Of
them, the Kappa Pruning heuristic aims at maximizing the pair-wise difference
between the selected ensemble members. In [16], the authors proposed to use
the clustering algorithm to prune redundant neural networks for maintaining
the diversity of the ensemble committee of neural networks. The major problem
with the above algorithms is that they do not consider the trade-off between
accuracy and diversity. To solve this limitation, Margineantu and Dietterich [18]
suggest pruning the initial set of M classifiers using Kappa-error convex hull
criteria that is a diagram-based heuristic targeting at a good accuracy-diversity
trade-off among the selected subsets. [13] proposed a genetic algorithm to study
the trade-off between accuracy and diversity for ensemble pruning. Using an
iterative process, the proposed approach evaluates an accuracy-diversity trade-
off measure for different sub ensemble solutions and the sub ensemble with the
highest value is returned by the algorithm. This approach is often subject to
overfitting problems especially when the number of validation samples provided
is not sufficient. On the other hand, Ensemble selection also employs greedy
forward selection to select models to add to the ensemble [9]. Compared to pre-
vious works, ensemble selection uses many more classifiers, allows optimizing to
arbitrary performance metrics, and includes refinements to prevent overfitting
to the ensembles hillclimb data. Ensemble selection of classifiers from a large
and diverse library of base classifiers have been shown to be most competitive
learning principles in a recent world-wide KDD’09 Cup Orange Challenge [20].



Most of the methods proposed in the literature are based on a single parame-
ter to select the ensemble members. Selection-based methods in [18, 13] consider
both diversity and accuracy to train the ensemble but we currently lack effective
pruning principles to consider the individual accuracy-diversity trade-off ”con-
tribution” that each ensemble member can bring to the ensemble. So it seems
that there are still many unanswered questions: (1) What is a good balance
between accuracy and diversity for each individual classifier in the ensemble?
(2) Should different data sets have different control parameters? and (3) which
refinements could be included to prevent overfitting ? We address some of these
above concerns in the next section.

3 Contribution

In this section, we describe our algorithm, called Fitselect, to select the classifier
ensemble under the Overproduce and Choose paradigm.We restrict our approach
to the RF but it is straightforward to generalize the method to any library of
general classifiers. Fitselect belongs to the pruning approaches that reorder the
original ensemble members based on some predefined criteria and select a subset
of ensemble members from the sorted list. The training data set is subdivided
into ”training” and ”validation” subsets. The training subset serves to construct
the RF and the validation set is used for ensemble selection. Fitselect works
by evaluating the accuracy and diversity of the decision trees in the RF and
selecting the promising trees. The final solution is achieved by combining all the
selected trees from the original forest. To study the trade-off between accuracy
and diversity, we use the fitness function employed in [21, 13] to evaluate each
decision tree hi. Given a RF H with M decision trees {h1, h2, . . . , hM}, the
fitness function of each decision tree hi is given by:

fitness(hi) = α× a(hi)

ma
+ (1− α)× d(hi)

md
(1)

where a(hi) and d(hi) stands respectively for the accuracy and the diversity of
the tree hi computed on the validation data set. ma and md denotes respectively
the maximal accuracy and diversity overall trees in the forest H. 0 ≤ α ≤ 1 is
a control parameter that balances the accuracy and the diversity. The accuracy
a(hi) is defined as the average correct predictions of hi on the validation set.

Two classifiers Ci and Cj are said diverse if they assign different class la-
bels to the same examples. Various measures have been proposed to quantify
the diversity between two classifiers from their respective outputs [15, 18, 13]. In
this study, we define the diversity d(hi) to be the average Hamming distance,
computed on the validation set, between the prediction of hi and the other trees
in the forest. Accuracy and diversity values are normalized separately (using
respectively the ma and md factors) so that the values range from 0 to 1. Nor-
malizing both terms allows α to have the same meaning across multiple domains.
Once the fitness scores have been calculated for a given α, we rank all the trees
according to their fitness values and we select the first L < M trees that max-
imize the accuracy only of the ensemble on the validation set. In other terms,



there is no L′ ̸= L such that the L′ first trees are more accurate than the L first
trees in the ordered list. The search is in O(M). The selected trees form the new
forest. To summarize, the fitness is used for ranking only, and accuracy is used
for selecting. Note that any arbitrary performance metric could be useed instead
of accuracy, like the area under the ROC curve [20].

As there are a large number of trees to select from, the chances of overfit-
ting increase dramatically [9, 7]. In addition, ensemble selection is still prone to
overfitting when the validation set is small. We therefore propose to wrap cross-
validation around ensemble selection to maximize the amount of validation data
considering, in turn, each fold as a validation fold. This has a bagging like effect
that combat overfitting. A cross-validated RF is created by training a tree in each
fold. If there are K folds, there will be K individual RF models (each trained on
a fraction of K − 1/K training points). These RF differ due to their different
training samples. Tree ensemble selection is performed in each RF model. The
aim is to increase performance by reducing the variance of the forward stepwise
selection process. While adding cross-validation to ensemble selection is com-
putationally expensive, the ensemble selection method is far simpler than the
sequential forward selection (SFS) and sequential backward selection (SBS) dis-
cussed in [1], as well as the more complex genetic algorithm proposed in [13],
since the ranking is performed once in O(M log(M)). The methods is of course
sub-optimal however it is very fast and simple. The final tree ensemble is ob-
tained through combining all the selected trees obtained over the different K
cross-validation steps. As the combined selected trees are obtained from K dif-
ferent training and model selection process, the chances of finding combinations
of trees that overfit the validation sets is minimized.

The balance between diversity and accuracy is a controversial issue, so it is
unclear what value α should take. We believe it should be adjusted to the data
set at hand. Therefore, we perform multiple runs with increasing values of α
(10% increase at each step) as done in [21]. The value of α which produces the
highest average overall accuracy on the K different sub ensembles of selected
trees {S(α,1), . . . , S(α,K)} is used to rank and select the trees. Note that simple
majority voting is used to combine the predictions of the ensembles. The average
overall accuracy Accα over the K cross-validation steps {S(α,1), . . . , S(α,K)} for
a given value α is measured as:

Accα =
1

K

K∑
j=1

Acc(α,j) (2)

where Acc(α,j) corresponds to the ensemble’s accuracy of tree sub ensemble
S(α,j) selected for the cross-validation step j. Algorithm 1 summarizes the overall
approach.



Algorithm 1 pseudo code for FitSelect

1: for each cross-validation step j ∈ [1,K] do
2: Hj : Construct a RF with M decision trees {h1,j , h2,j , . . . , hM,j} on the training

set.
3: {a(h1,j), ..., a(hM,j)} : Calculate (on the validation set) the tree accuracies in

Hj .
4: {d(h1,j), ..., d(hM,j)} : Calculate (on the validation set) the tree diversity values

using the average Hamming distance between prediction of each tree and all the
other trees in Hj

5: end for
6: for each value of α ∈ [0, 1]; α = α+ 0, 1 do
7: for each cross-validation step j ∈ [1,K] do
8: {fitnessα(h1,j), . . . , fitnessα(hM,j)} : Calculate the tree fitness values as

fitnessα(hi,j) = α× a(hi)
ma

+ (1− α)× d(hi)
md

9: Sort the trees {h1,j , . . . , hM,j} in decreasing order of the fitness
10: Select the (L < M) first trees S(α,j) = {h1,j , . . . , hL,j} that maximize, A(α,j),

the ensemble’s accuracy (using majority voting) of the selected trees in S(α,j)

on the validation set
11: end for

12: Calculate the average overall accuracy Accα = 1
K

K∑
j=1

Acc(α,j) of the K selected

sub ensembles {S(α,1), . . . , S(α,K)}
13: end for
14: αopt = argmaxα∈[0,1](Accα)

15: RF (final) = Combine {S(αopt,1), . . . , S(αopt,K)}

4 Empirical Results

4.1 Experiments on benchmark data sets

The Fitselect RF selection algorithm was tested on 11 binary classification prob-
lems: Clean, Haberman, Madelon, Pima, Spamb, Transfusion, Wdbc from the
UCI repository [3], Engytime [22] and Leukemia [14]. The characteristics of data
sets are reported in Table 1. For each problem we splitted the data set into a
training and testing sets of equal sizes. In order to guarantee the original class
distribution within training and testing sets, a proportionate stratified sampling
was applied. The training set was splitted using a 3-fold cross-validation: 3 RF
models with 500 decision trees were trained on a fraction of 2/3 training points.
Selection was performed on the 1/3 withheld data points using Fitselect. The
testing set was used to evaluate the performance of the final tree ensemble re-
turned by Fitselect. Four performance metrics were used. Three threshold met-
rics: accuracy (Acc), recall (Rec), F-Score (F) and one ordering/rank metric: the
area under the ROC curve (AUC).

For each dataset, the performance of the classifier ensemble obtained with
Fitselect was compared to (1) the unpruned tree ensemble obtained from learn-
ing the RF algorithm on the whole training set and (2) the forward ensemble



Table 1. Data sets used in the experiments.

Data sets # instance # features

Clean 476 166
Engytime 4096 2
Haberman 306 3
Leukemia 72 7129
Madelon 2600 500
Pima 768 8
Spamb 4601 57
Transfusion 748 4
Wdbc 569 30

selection method (which we will refer to as Forward) [9] used by the winner of
the recently KDD Cup Orange Challenge (2009). To test the statistical relevancy
of the results, we used Wilcoxon signed-rank test, a non-parametric equivalent
of paired t-test. Table 2 shows that the performances of the Fitselect outper-
formed both RF and the ensemble selection algorithm proposed in [9] for the
majority of the data sets (except for the recall metric for Madelon and the AUC
value for Transfusion). The difference in accuracy, over all data sets, between
Fitselect and the Forward selection algorithm is significant at 0.01 level using
the Wilcoxon signed-rank test, at 0.04 for Recall, at 0.01 for F-Score and at
0.02 for AUC. The difference in accuracy, over all data sets, between Fitselect
and the RF is significant at 0.01 for accuracy, at 0.04 for Recall, at 0.01 for
F-Score and at 0.02 for AUC. In all cases, the test statistics were less than the
critical value for a two-tailed p-value of 0.05 so the differences in performnce be-
tween Fitselect and both RF and Forward approaches were significant at this
level. In a way of conclusion, we suggest that adaptively trading off diversity
and accuracy during the tree selection on cross-validated data sets is adequate
for improving RF predictions. It seems however difficult to extract any general
conclusion about the best trade-off between accuracy and diversity. The value
of αopt varied significantly from on data set to another, from 0.3 up to 1 (for
Leukemia and Transfusion), indicating that accuracy tend to be favored more
than diversity during the ensemble pruning. Although its effectiveness is con-
firmed for a library of heterogeneous models, our experiments suggest that the
ensemble selection method proposed in [9] is not effective in the RF framework.

4.2 Experiments on real data sets

In this section, we report very briefly on some investigations with Fitselect on
real-world data to illustrate the usefulness of the method in a real breast cancer
(BC) epidemiological study conducted by Dr. Corbex at the World Health Or-
ganization located in Cairo. The overall purpose of the study was to investigate
if the psychological, economic, or socio/cultural profile of women in Egypt can



Table 2. Performance scores on benchmark data sets. Best scores are in boldface.
The number of trees returned by the Forward method for each data set is given in
parentheses; αopt and the number of trees selected by Fitselect are given in parentheses.

Clean data set Engytime data set

RF Fwd(37) Fitsel.(0.6,80) RF Fwd(37) Fitsel.(0.9,90)

Acc 0.7322 0.7029 0.7657 0.9639 0.9624 0.9663
Rec 0.6346 0.5288 0.6635 0.9600 0.9502 0.9600
F 0.6735 0.6077 0.7113 0.9637 0.9619 0.9661
AUC 0.7953 0.7574 0.8278 0.9883 0.9840 0.9886

Haberman data set Leukemia data set

RF Fwd(21) Fitsel.(0.7,60) RF Fwd(21) Fitsel.(1,30)

Acc 0.6883 0.7078 0.7208 0.8919 0.9189 0.9459
Rec 0.5122 0.3902 0.5122 0.6923 0.7692 0.8462
F 0.4667 0.4156 0.4941 0.8182 0.8696 0.9167
AUC 0.7086 0.7127 0.7182 0.9792 0.9744 0.9812

Madelon data set Pima data set

RF Fwd(163) Fitsel.(0.3,230) RF Fwd(136) Fitsel.(0.6,100)

Acc 0.7423 0.7231 0.7408 0.7786 0.7682 0.7865
Rec 0.6631 0.6923 0.6708 0.5448 0.5448 0.5672
F 0.7201 0.7143 0.7213 0.6320 0.6213 0.6496
AUC 0.8080 0.7865 0.8077 0.8463 0.8241 0.8569

Spamb data set Transfusion data set

RF Fwd(54) Fitsel.(0.8,70) RF Fwd(25) Fitsel.(1,30)

Acc 0.9166 0.8979 0.9183 0.7727 0.7701 0.7781
Rec 0.9261 0.9107 0.9261 0.1685 0.2022 0.2135
F 0.8974 0.8755 0.8994 0.2609 0.2951 0.3140
AUC 0.9675 0.9598 0.9690 0.6366 0.6481 0.6439

Wdbc data set

RF Fwd(31) Fitsel.(0.8,40)

Acc 0.9544 0.9544 0.9719
Rec 0.9497 0.9609 0.9665
F 0.9632 0.9636 0.9774
AUC 0.9899 0.9921 0.9931

be predictive of the delays between: 1) the first symptoms and the first visit to
a doctor, and 2) the first visit to a doctor and the effective diagnosis. The first
delay is mainly women dependent, while the second is mainly dependent on the
health system. These delay values were binned into two bins according to the
epidemiologist: “short delay” (class 1) and “long delay” (class 2). 204 patients
treated in Cairo were interviewed according to a questionnaire with up to 70
questions (medical journey, personal journey and socio-cultural barriers). Ex-
planatory categorical variables included socio-economic status (education level
and economic capacity), socio-economic status (age, marital status, residence,
household, etc), awareness and beliefs (knowledge about BC, stigma, modesty
issues, etc.), behaviors and attitudes (what women do, what they share about



Table 3. The data sets description.

Data sets # instance # features long short

Delay between symptoms and consultation 201 40 99 102
Delay between consultation and diagnosis 173 36 86 87

Table 4. Performance results for the two tasks.

Delay between Delay between
first symptoms doctor consultation

and doctor consultation and effective diagnosis

RF Fwd(44) Fitsel.(0.6,130) RF Fwd(92) Fitsel.(0.7,70)

Acc 0.6238 0.5446 0.6634 0.6437 0.5977 0.6782
Rec 0.5686 0.4510 0.5686 0.5000 0.5227 0.6364
F 0.6042 0.5000 0.6304 0.5867 0.5679 0.6667
AUC 0.6425 0.5539 0.6531 0.6641 0.6414 0.6942

their disease and with who, etc.). For each explained variable, the epidemiologist
has selected a subset of explanatory variables and a subset of women, see Table
3.

Here again, the performance of the classifier ensemble obtained, for both clas-
sification tasks, with Fitselect was compared to (1) the unpruned tree ensemble
obtained from learning the RF algorithm on the whole training set and (2) the
forward ensemble selection method. Results are reported in Table 4. As may be
seen, Fitselect outperformed the other algorithms by a noticeable margin on the
both classification tasks. Surprisingly, the Fwd method performed worse than
RF. Future work will aim to extract the most important variables that explains
a promising accuracy of about 67% for two tasks, from the selected trees.

5 Conclusion

This paper introduced a tree ensemble selection method to improve efficiency and
effectiveness of RF by adaptively trading off diversity and accuracy according to
the data. We wrapped cross-validation around ensemble selection to maximize
the amount of validation data considering, in turn, each fold as a validation fold.
Tree ensemble selection was performed in each RF model. The tree selection
method called Fitselect was shown to increase performance by reducing the
variance of the ensemble selection process, however the gain in performance
was relatively modest in our experiments. It would be interesting for work to
be performed to ascertain the classification problems for which the Fitselect is
most suited. Moreover, it seems difficult to extract any general conclusion about
the best trade-off between accuracy and diversity in view of our experiments.



References

1. S. Bernard, L. Heutte, and S. Adam. On the selection of decision trees in random
forests. In International Joint Conference on Neural Network (IJCNN’09), pages
302–307, 2009.

2. G. Biau, L. Devroye, and G. Lugosi. Consistency of random forests and other
averaging classiers. Journal of Machine Learning Research, 9:2039–2057, 2008.

3. C.L Blake and C.J Merz. Uci repository of machine learning databases, 1998.
4. L. Breiman. Bagging predictors. Machine Learning, 26(2):123–140, 1996.
5. L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
6. G. Brown and L.I. Kuncheva. “good” and “bad” diversity in majority vote en-

sembles. In Proceedings of Multiple Classifier Systems 2010, LNCS 5997, pages
124–133, 2010.

7. R. Caruana, A. Munson, and A. Niculescu-Mizil. Getting the most out of ensem-
ble selection. In Proceedings of the 6th International Conference on Data Mining
(ICDM ‘06), December 2006.

8. R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised learn-
ing algorithms. In Proceedings of the 23rd International Conference on Machine
Learning (ICML’06), 2006.

9. R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes. Ensemble selection from
libraries of models. In 21st International Conference on Machine Learning, 2004.

10. T.G. Dietterich. Ensemble methods in machine learning. In First International
Workshop on Multiple Classier Systems, pages 1–15, 2000.

11. T.G. Dietterich. An experimental comparison of three methods for constructing
ensembles of decision trees: bagging, boosting and randomization. Machine Learn-
ing, 40:139–157, 2000.

12. Y. Freund and Robert E. Shapire. Experiments with a new boosting algorithm.
In 13th International Conference on Machine Learning, pages 276–280, 1996.

13. D. Gacquer, V. Delcroix, F. Delmotte, and S. Piechowiak. On the effectiveness of di-
versity when training multiple classifier systems. In European Conference on Sym-
bolic and Quantitative Approaches to Reasoning with Uncertainty ECSQARU’09,
pages 493–504, 2009.

14. T.R. Golub, Slonim, D.K., P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov,
and H. Coller. Molecular classication of cancer: Class discovery and class prediction
by gene expression monitoring. Science, 286:531–537, 1999.

15. L.I. Kuncheva. Combining Pattern Classiers: Methods and Algorithms. Wiley
Interscience, 2004.

16. G. Li, J. Yang, A.S. Kong, and N. Chen. Clustering algorithm based selective
ensemble. Journal of Fudan University, 43:689–695, 2004.

17. Z. Lu, X. Wu, and J. Bongard. Ensemble pruning via individual contribution
ordering. In ACM Knowledge Discovery and Data Mining SIGKDD, 2010.

18. D.D. Margineantu and T.G. Dietterich. Pruning adaptive boosting. In 14th Inter-
national Conference on Machine Learning, pages 211–218, 1997.

19. G. Martinez-Munoz, D. Hernandez-Lobato, and A. Suarez. An analysis of ensemble
pruning techniques based on ordered aggregation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31(2):245–259, 2009.

20. A. Niculescu-Mizil and et al. Winning the kdd cup orange challenge with ensemble
selection. In Journal of Machine Learning Research, to appear, 2010.

21. D. Opitz and R. Maclin. Popular ensemble methods: An empirical study. Journal
of Articial Intelligence Research, 11:169–198, 1999.



22. A. Ultsch. Fundamental clustering problems suite, 2005.
23. R. Diaz Uriarte and S. Alvarez de Andres. Gene selection and classication of

microarray data using random forest. BMC Bioinformatics, 7(3):1–13, 2006.
24. Y. Zhang, S. Burer, and W. N. Street. Ensemble pruning via semi-denite program-

ming. Journal of Machine Learning Research, 7:1315–1338, 2006.



Facial Action Unit Recognition using Filtered

Local Binary Pattern Features with Bootstrapped

and Weighted ECOC Classi�ers

R.S.Smith and T.Windeatt

Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford,
Surrey GU2 7XH, UK

{Raymond.Smith, T.Windeatt}@surrey.ac.uk.

Abstract. Within the context face expression classi�cation using the
facial action coding system (FACS), we address the problem of detect-
ing facial action units (AUs). The method adopted is to train a single
error-correcting output code (ECOC) multiclass classi�er to estimate the
probabilities that each one of several commonly occurring AU groups is
present in the probe image. Platt scaling is used to calibrate the ECOC
outputs to probabilities and appropriate sums of these probabilities are
taken to obtain a separate probability for each AU individually. Feature
extraction is performed by generating a large number of local binary pat-
tern (LBP) features and then selecting from these using fast correlation-
based �ltering (FCBF). The bias and variance properties of the classi�er
are measured and we show that both these sources of error can be re-
duced by enhancing ECOC through the application of bootstrapping and
class-separability weighting.

1 Introduction

The facial-action coding system (FACS) of Ekman and Friesen [1,2] is commonly
employed in applications which perform automatic facial expression recognition.
In this method, individual facial movements are characterised as one of 44 types
known as action units (AUs). Groups of AUs may then be mapped to emotions
using a standard code book. Note however that AUs are not necessarily inde-
pendent as the presence of one AU may a�ect the appearance of another. They
may also occur at di�erent intensities and may occur on only one side of the
face. In this paper we focus on recognising six AUs from the region around the
eyes, as illustrated in Fig. 1.

Initial representation methods for AU classi�cation were based on measuring
the relative position of a large number of landmark points on the face [2]. It
has been found, however, that comparable or better results can be obtained by
taking a more holistic approach to feature extraction using methods such as
Gabor wavelets or principal components analysis (PCA) [3]. In this paper we
compare two such methods, namely PCA [4] and local binary pattern (LBP)



AU1 + AU2 + AU5 AU4 AU4 + AU6 + AU7

Fig. 1. Some example AUs and AU groups from the region around the eyes. AU1
= inner brow raised, AU2 = outer brow raised, AU4 = brows lowered and drawn
together, AU5 = upper eyelids raised, AU6 = cheeks raised, AU7 = lower eyelids raised.
The images are shown after manual eye location, cropping, scaling and histogram
equalisation.

features [5]. The latter is a computationally e�cient texture description method
that has the bene�t that it is relatively insensitive to lighting variations. LBP
has been successfully applied to facial expression analysis [6] and here we take
as features the individual histogram bins that result when LBP is applied over
multiple sub-regions of an image and at multiple sampling radii.

One problem with the holistic approach is that it can lead to the generation
of a very large number of features and so some method must be used to select
only those features that are relevant to the problem at hand. For PCA a natural
choice is to use only those features that account for most of the variance in the
set of training images. For the LBP representation, AdaBoost has been used
to select the most relevant features [6]. In this paper, however, we adopt the
very e�cient fast correlation-based �ltering (FCBF) [7] algorithm to perform
this function. FCBF operates by repeatedly choosing the feature that is most
correlated with class, excluding those features already chosen or rejected, and
rejecting any features that are more correlated with it than with the class. As
a measure of correlation, the information-theoretic concept of symmetric uncer-
tainty is used.

To detect the presence of particular AUs in a face image, one possibility is
to train a separate dedicated classi�er for each AU. Bartlett et. al. for example
[8], have obtained good results by constructing such a set of binary classi�ers,
where each classi�er consists of an AdaBoost ensemble based on selecting the
most useful 200 Gabor �lters, chosen from a large population of such features.
An alternative approach [6] is to make use of the fact that AUs tend to occur in
distinct groups and to attempt, in the �rst instance, to recognise the di�erent
AU groups before using this information to infer the presence of individual AUs.
This second approach is the one adopted in this paper; it treats the problem
of AU recognition as a multiclass problem, requiring a single classi�er for its
solution. This classi�er generates con�dence scores for each of the known AU
groups and these scores are then summed in di�erent combinations to estimate
the likelihood that each of the AUs is present in the input image.

One potential problem with this approach is that, when the number positive
indicators for a given AU (i.e. the number of AU groups to which it belongs)



di�ers from the number of negative indicators (i.e. the number of AU groups
to which it does not belong), the overall score can be unbalanced, making it
di�cult to make a correct classi�cation decision. To overcome this problem we
apply Platt scaling [9] to the total scores for each AU. This technique uses
a maximum-likelihood algorithm to �t a sigmoidal calibration curve to a 2-
class training set. The re-mapped value obtained from a given input score then
represents an estimate of the probability that the given point belongs to the
positive class.

The method used in this paper to perform the initial AU group classi�ca-
tion step is to construct an error-correcting output code (ECOC) ensemble of
multi-layer perceptron (MLP) neural networks. The ECOC technique [13] has
proved to be a highly successful way of solving a multiclass learning problem by
decomposing it into a series of 2-class problems, or dichotomies, and training a
separate base classi�er to solve each one. These 2-class problems are constructed
by repeatedly partitioning the set of target classes into pairs of super-classes so
that, given a large enough number of such partitions, each target class can be
uniquely represented as the intersection of the super-classes to which it belongs.
The classi�cation of a previously unseen pattern is then performed by applying
each of the base classi�ers so as to make decisions about the super-class mem-
bership of the pattern. Redundancy can be introduced into the scheme by using
more than the minimum number of base classi�ers and this allows errors made
by some of the classi�ers to be corrected by the ensemble as a whole.

In addition to constructing vanilla ECOC ensembles, we make use of two
enhancements to the ECOC algorithm with the aim of improving classi�cation
performance. The �rst of these is to promote diversity among the base classi�ers
by training each base classi�er, not on the full training set, but rather on a
bootstrap replicate of the training set [14]. These are obtained from the original
training set by repeated sampling with replacement and this results in further
training sets which contain, on average, 63% of the patterns in the original set
but with some patterns repeated to form a set of the same size. This technique
has the further bene�t that the out-of-bootstrap samples can also be used for
other purposes such as parameter tuning.

The second enhancement to ECOC is to apply weighting to the decoding
of base-classi�er outputs so that each base classi�er is weighted di�erently for
each target class (i.e. AU group). For this purpose we use a method known as
class-separability weighting (CSEP) ([15] and section 2) in which base classi�ers
are weighted according to their ability to distinguish a given class from all other
classes.

When considering the sources of error in statistical pattern classi�ers it is
useful to group them under three headings, namely Bayes error, bias (strictly
this is measured as bias2) and variance. The �rst of these is due to unavoidable
noise but the latter two can be reduced by careful classi�er design. There is
often a tradeo� between bias and variance [10] so that a high value of one
implies a low value of the other. The concepts of bias and variance originated
in regression theory and several alternative de�nitions have been proposed for



extending them to classi�cation problems [11]. Here we adopt the de�nitions of
Kohavi and Wolpert [12] to investigate the bias/variance characteristics of our
chosen algorithms. These have the advantage that bias and variance are non-
negative and additive. A disadvantage, however, is that no explicit allowance is
made for Bayes error and it is, in e�ect, rolled into the bias term.

Previous investigation [15,16,17] has suggested that the combination of boot-
strapping and CSEP weighting improves ECOC accuracy and that, for general
problems at least, this is achieved through a reduction in both bias and vari-
ance error. In this paper we extend this work, for the speci�c problem of FACS
recognition, in three main ways: �rstly we compare two di�erent image feature
extraction strategies (namely PCA and LBP plus FCBF), secondly we show
that Platt scaling improves AU recognition accuracy and thirdly we perform a
bias-variance analysis on the AU group recognition problem.

2 ECOC Weighted Decoding

The ECOC method consists of repeatedly partitioning the full set of N classes
Ω into L super-class pairs. The choice of partitions is represented by an N × L
binary coding matrix Z. The rows Zi are unique codewords that are associated
with the individual target classes ωi and the columns Zj represent the di�erent
super-class partitions. A separate base classi�er is trained to solve the 2-class
problem represented by each column.

Given an input pattern vector x whose true class y (x) ∈ Ω is unknown, let
the soft output from the jth base classi�er be sj (x) ∈ [0, 1]. The set of outputs

from all the classi�ers can be assembled into a vector s(x) = [s1(x), . . . , sL(x)]
T ∈

[0, 1]
L
called the output code for x. In its general form, a weighted decoding pro-

cedure makes use of an N ×L weights matrix W that assigns a di�erent weight
to each target class and base classi�er combination. For each class ωi we may
use the L1 metric to compute a class score Fi (x) ∈ [0, 1] as follows:

Fi (x) = 1 −
L∑

j=1

Wij |sj (x) − Zij| , (1)

where it is assumed that the rows of W are normalized so that
∑L

j=1
Wij =

1 for i = 1 . . . N . Patterns may then be assigned to the target class ŷ (x) =
arg maxωi Fi (x). If the base classi�er outputs sj (x) in Eqn. 1 are replaced by
hardened values hj (x) then this describes the weighted Hamming decoding pro-
cedure.

In the context of this paper Ω is the set of known AU groups and we are
also interested in combining the class scores to obtain values that measure the
likelihood that AUs are present; this is done by summing the Fi (x) over all ωi

that contain the given AU and dividing by N . That is, the score Gk ∈ [0, 1] for
AUk is given by:

Gk (x) =
1

N

∑
AUk∈ωi

Fi (x) (2)



The values of W may be chosen in di�erent ways. For example, if Wij = 1

L
for all i, j then the decoding procedure of Eqn. 1 is equivalent to the standard
unweighted L1 or Hamming decoding scheme. In this paper we make use of the
CSEP measure [15,17] to obtain weight values that express the ability of each
base classi�er to distinguish members of a given class from those of any other
class. The algorithm for computing CSEP weights is shown in Fig. 2.

Inputs: matrix of training patterns T ∈ RP×M , binary coding matrix Z ∈
{0, 1}N×L, trained ECOC coding function E : RM 7→ [0, 1]L .
Outputs: weight matrix W ∈ [0, 1]N×L where

PL
j=1 Wij = 1, for i = 1 . . . N .

Apply E to each row of T and round to give prediction matrix H ∈ {0, 1}P×L.
Initialise W to 0.
for c = 1 to N
for i = indices of training patterns belonging to class c
for j = indices of training patterns not belonging to class c
let d be the true class of the pattern Tj .
for k = 1 to L
if Hik = Zck and Hjk = Zdk, add 1 to Wck

as the predictions for both patterns Ti and Tj are correct.
if Hik 6= Zck and Hjk 6= Zdk, subtract 1 fromWck

as the predictions for both patterns Ti and Tj are incorrect.
end

end
end

end
Reset all negative entries in W to 0.
Normalize W so that each row sums to 1.

Fig. 2. Pseudo-code for computing the class-separability weight matrix for ECOC.

3 Experiments

In this section we present the results of performing classi�cation experiments on
the Cohn-Kanade face expression database [18]. This dataset contains frontal
video clips of posed expression sequences from 97 university students. Each se-
quence goes from neutral to target display but only the last image has available
a ground truth in the form of a manual AU coding. In carrying out these exper-
iments we focused on detecting AUs from the the upper face region as shown in
Fig. 1. Neutral images were not used and AU groups with three or fewer exam-
ples were ignored. In total this led to 456 images being available and these were
distributed across the 12 classes shown in Table 1.

Each 640 x 480 pixel image we converted to greyscale by averaging the RGB
components and the eye centres were manually located. A rectangular window



Table 1. Classes of action unit groups used in the experiments.

Class number 1 2 3 4 5 6 7 8 9 10 11 12

AUs present None 1,2 1,2,5 4 6 1,4 1,4,7 4,7 4,6,7 6,7 1 1,2,4

Number of examples 152 23 62 26 66 20 11 48 22 13 7 6

around the eyes was obtained and then rotated and scaled to 150 x 75 pixels.
Histogram equalization was used to standardise the image intensities. LBP fea-
tures were extracted by computing a uniform (i.e. 59-bin) histogram for each
sub-window in a non-overlapping tiling of this window. This was repeated with
a range of tile sizes (from 12 x 12 to 150 x 75 pixels) and sampling radii (from 1 to
10 pixels). The histogram bins were concatenated to give 107,000 initial features;
these were then reduced to approximately 120 features by FCBF �ltering.

ECOC ensembles of size 200 were constructed with single hidden-layer MLP
base classi�ers trained using the Levenberg-Marquardt algorithm. A range of
MLP node numbers (from 2 to 16) and training epochs (from 2 to 1024) was
tried; each such combination was repeated 10 times and the results averaged.
Each run was based on a di�erent randomly chosen strati�ed training set with a
90/10 training/test set split. The experiments were performed with and without
CSEP weighting and with and without bootstrapping. The ECOC code matrices
were randomly generated but in such a way as to have balanced numbers of
1s and 0s in each column. Another source of random variation was the initial
MLP network weights. When bootstrapping was applied, each base classi�er was
trained on a separate bootstrap replicate drawn from the complete training set
for that run. The CSEP weight matrix was, in all cases, computed from the full
training set.

3.1 Classi�er accuracy

Table 2 shows the mean AU classi�cation error rates and area under ROC �gures
obtained using these methods (including Platt scaling); the best individual AU
classi�cation results are shown in Table 3. From Table 2 it can be seen that the
LBP feature extraction method gives greater accuracy than PCA. Furthermore,
LBP is able to bene�t from the application of bootstrapping and CSEP weight-
ing, whereas PCA does not. The LBP method thus exhibits behaviour similar to
that found on other data sets [15], in that bootstrapping and CSEP weighting
on their own each lead to some improvement and the combination improves the
results still further. By contrast, PCA performance is not improved by either
technique, whether singly or in combination. The reasons for this anomaly, in
terms of a bias/variance decomposition of error, are discussed in section 3.3.

3.2 The e�ect of Platt scaling

Platt scaling was used to convert the soft scores Gk from Eqn. 2 into approximate
measures of the probability that AUk is present. An example of the kind of



Table 2. Best mean error rates and area under ROC curves for the AU recognition
task.

Bootstrapping CSEP Weighting Error (%) Area Under ROC
Applied Applied PCA LBP + FCBF PCA LBP + FCBF

No No 9.5 9.0 92.8 93.7

Yes No 9.8 8.8 92.8 94.4

No Yes 9.5 9.0 93.0 94.2

Yes Yes 9.6 8.5 93.0 94.8

Table 3. Best error rates and area under ROC curves for individual AU recognition.
LBP feature extraction was used, together with bootstrapping and CSEP weighting.
MLPs had 16 nodes and 8 training epochs.

AU no. 1 2 4 5 6 7

Error (%) 8.9 5.4 8.7 4.8 11.2 12.3

Area under ROC 94.4 96.2 96.1 97.0 92.1 92.2

calibration curves that result from this algorithm is shown in Fig. 3 and the
e�ect of applying the mapping to the test set is shown in Fig. 4. Note that,
before calibration all scores are below 0.5 and hence would be classed as AU not
present. After calibration (Fig. 4(b)) most of the test patterns that contain AU2
fall to the right hand side of the 0.5 threshold and hence are correctly classi�ed.

Table 4 shows the e�ect on mean error rates and area under ROC curve.
It can be seen that AU detection error rates are approximately halved by this
procedure but that it has no e�ect on the area under ROC curve values. The
reason for this is that the application of any monotonically increasing function
to Gk does not a�ect the shape of the ROC curve, it only a�ects the threshold
values associated with each point on the ROC curve.

3.3 A bias/variance analysis

It is instructive to view the performance of these algorithms from the point of
view of a bias/variance decomposition of error. Fig. 5 shows bias and variance
curves for AU group recognition when the number of training epochs is varied
and other parameter settings are �xed at their respective optimal values. It is
notable that, for both types of feature extraction, bias error (which, as noted in
section 1, includes an unknown amount of Bayes error) predominates. Bias is,
however, somewhat higher for PCA (at around 40%) than for LBP (at around
35%). This indicates that LBP is more successful at capturing subtle variations in
face expressions than PCA. The downside to this is that LBP feature extraction
is more heavily in�uenced by chance details of the training set and hence shows
higher variance (at around 8%) than PCA (at around 4.5%). It is thus evident
that these two feature extraction methods are operating at di�erent points on
the bias/variance tradeo� curve.



Table 4. The e�ect of applying Platt scaling on error rates and area under ROC curves
for AU recognition

Scaling Error (%) Area Under ROC
Applied PCA LBP + FCBF PCA LBP + FCBF

No 17.5 16.6 93.0 94.8

Yes 9.6 8.5 93.0 94.8
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Fig. 3. Calibration curve for AU2 training set (bootstrapping plus CSEP weighting
applied).

One notable di�erence between LBP and PCA is that, when ECOC is aug-
mented with bootstrapping and CSEP weighting, the former method bene�ts by
a reduction in both bias and variance; this is consistent with results found on
other datasets [16]. For PCA, by contrast, variance is reduced but this is can-
celled by an increase in bias so that PCA does not bene�t from these methods.
This increase in bias appears to be largely due to the application of bootstrap-
ping.

4 Discussion and Conclusions

In this paper we have shown that good results on the problem of AU classi�cation
can be achieved by using a single multi-class classi�er to estimate the probabil-
ities of occurrence of each one of a set of AU groups and then combining the
values to obtain individual AU probabilities. An ECOC ensemble of MLP neu-
ral networks has been shown to perform well on this problem, particularly when
enhanced by the application of bootstrapping and CSEP weighting. When com-
bining ECOC outputs it has been found necessary to apply a score-to-probability
calibration technique such as Platt scaling to avoid the bias introduced by dif-
ferent AU group membership numbers.
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Fig. 4. The e�ect of Platt scaling on the distribution of test-set scores for AU2.
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Fig. 5. Bias and variance curves for di�erent feature extraction methods using 16-node
base classi�ers.

Two methods of feature extraction have been examined, namely PCA as
applied directly to the input images, and the use of LBP to extract a wide range
of texture features followed by FCBF �ltering to reduce their number. The LBP-
based method has been found to be more e�ective. This is particularly true when
combined with bootstrapping and CSEP weighting which lead to a reduction in
both bias and variance error.

From an e�ciency point of view, it is worth noting that both LBP and
FCBF (which is only required during training) are fast lightweight techniques.
The use of a single classi�er, rather than one per AU, also helps to minimise the
computational overheads of AU detection.
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Abstract. Protein subcellular location prediction is one of the most
difficult multiclass prediction problems in modern computational biology.
Many methods have been proposed in the literature to solve this problem,
but all the existing approaches are affected by some limitations. In this
contribution we propose a novel method for protein subcellular location
prediction that performs multiclass classification by combining kernel
classifiers through DDAG. Each base classifier, called K-TIPCAC, projects
the points on a Fisher subspace estimated on the training data by means
of a novel technique. Experimental results clearly indicated that DDAG

K-TIPCAC performs equally, if not better, than state-of-the-art ensemble
methods for protein subcellular location.

Keywords: Bioinformatics, protein subcellular location prediction, Fisher
subspace, ensemble of classifiers.

1 Introduction

Since many different protein molecules are present in one or more subcellular
locations, a better understanding of their distribution and function is advisable
to understand the complex biological systems that regulate the biological life of
each cell. To this aim, the first and fundamental problem to be solved is the sub-
cellular protein localization. Since biochemical experiments aimed at this task
are both costly and time-consuming, and new proteins are continuously discov-
ered (increasing the gap between the newly found proteins and the knowledge
about their subcellular location), an efficient and effective automatic method for
protein subcellular location prediction is required.
This problem can be formulated as a multiclass classification problem as fol-
lows. The training dataset, PTrain, is composed of N protein vectors, PTrain =
{pi}

N

i=1
, where each protein sequence can be represented as a vector p = [Rj

s],
Rj

s being the amino acid residue whose ordered position in the sequence is
s = 1, · · · , S (S is the protein length, which differs in each protein), while
the superscript j = 1, . . . , 20 indicates which native amino acid is present in
the s-th position of the sequence. The proteins in PTrain are classified into M

subsets S =
⋃M

i=1
Si, where each subset, Sm (m = 1, 2, . . . ,M), is composed

of proteins with the same subcellular component, and the cardinality of S is



|S| = N = N1 + N2 + · · · + NM . The classifier’s aim is to learn the information
provided by PTrain to predict the subcellular location of a query protein pq.

In the past decade many authors have tried to handle this problem, and several
classification methods have been proposed [11]. Nevertheless, the problem is still
open due to several difficulties that make the task of protein subcellular location
prediction very challenging. At first, the protein data are usually encoded with
high dimensional vectors, so that the employed classifiers should be designed in
order to minimize the computational complexity. Secondly, the number of sub-
cellular locations that should be discriminated is at most 22 (that is M ≤ 22),
and some proteins, called multiplex proteins, might be present in more than one
cellular component, or they might move from one location to another. Finally,
the protein subcellular distribution is highly unbalanced since some cellular com-
ponents contain a significantly lower number of protein molecules. To achieve
satisfactory results in such (multiclass, high dimensional, and highly unbalanced)
classification problem, a dataset of high cardinality is needed. Unfortunately, the
training datasets have a limited number of proteins, due to the following reasons:
some proteins must be discarded since they contain less than 50 amino acids, or
they are annotated as ‘fragments’; to avoid homology bias proteins with ≥ 25%
sequence identity to any other in the same subcellular organelle must be elimi-
nated; proteins belonging to components with less than 20 proteins are generally
excluded, because of lacking statistical significance; several proteins cannot be
used as robust data for training a solid predictor since they have not been exper-
imentally annotated yet. Finally, further deletions might be performed by some
authors focusing on proteins with a unique subcellular location, or belonging
to a specific organism. These difficulties motivate the large number of research
works devoted to the task of protein location prediction; these methods can be
grouped according to either the data representation, or the employed algorithm.

Representing a protein p with a vector that codes its entire amino acid sequence
is unfeasible since this representation produces too long vectors of different di-
mensionality. A more compact representation is provided by the amino acid
composition (AAC) descriptor [6], whose elements are the normalized occurrence
frequencies of the 20 native amino acids. Since the AAC lacks the ability of repre-
senting the sequence order effects, several alternative non sequential descriptors
have been proposed in the literature. More precisely, these descriptors represent
both single and evolutionarily related groups of proteins: PseAAC) encodes pro-
teins by taking into account correlations between pairs of aminoacids at different
sequence distance w.r.t a given chemico-physical property [7]; the k-peptide en-
coding vector, which is the normalized occurrence of the k-letter pattern that
appears in a window being shifted along the sequence, is another popular rep-
resentation for single proteins [21]; evolutionarily related groups of proteins can
be encoded through the SeqEvo representation, based on the normalized occur-
rence of the changes in the protein sequence for each native amino acid (that is
insertions, deletions, substitutions of amino acid residues) that are due to pro-
teins evolution [13]. While the aforementioned protein representation schemes
are all strictly based on the protein amino acid sequence, alternative encodings



are possible by considering the availability of large amount of information con-
tained in public databases like the Functional Domain (FunD) [8] and the Gene
Ontology (GO) [1]. According to the content of FunD it is possible to code each
proteins in the form of a boolean vector indicating the presence/absence of any
of the 7785 functional protein domains annotated in the database and a similar
encoding scheme can be adopted by considering the annotations stored in the
Cellular Component division of the Gene Ontology.

Regarding the employed predictors, they are: the Covariant Discriminant (CD)
algorithm [7]; modified versions of the K-Nearest-Neighbor (KNN) technique [15,
21, 29], or its extension, called Optimized Evidence-Theoretic KNN (OET-KNN) [33,
10], Support Vector Machines (SVMs) [14, 22, 18], and the naive Bayes classifier [3].
All the aforementioned methods are depending on critical parameters, defining
both the protein representation mode, the dataset dimensionality, and different
settings of the learning algorithm. Recently, simple ensemble methods have been
proposed: given an engine learning algorithm (e.g. OET-KNN or SVM), these tech-
niques create different predictors by changing the values of their parameters, and
produce the final classification result by a simple majority vote algorithm [10,
31, 13].
Although promising results have been obtained, the computational efficiency and
the classification performance of all the above mentioned techniques are highly
affected both by the high unbalancing of the training set, and by the low car-
dinality of some classes compared to the high data dimensionality. To overcome
such weaknesses, in this paper we propose our ensemble method whose engine al-
gorithm, hereafter referred as Kernel Truncated Isotropic Principal Component
Analysis Classifier (K-TIPCAC ,see Section 2), is an evolution of the K-IPCAC and
the O-IPCAC algorithms [26, 28], which project the points on the Fisher subspace
estimated by a novel technique on the training data (see Section 2). The ensemble
method combines the results computed by different K-TIPCAC predictors through
a Decision Directed Acyclic Graph (DDAG) technique [24]. Experimental results
and the comparison to existing techniques, reported in Section 4, demonstrate
the effectiveness of the proposed method.

2 IPCAC, O-IPCAC, and K-TIPCAC

The first version of O-IPCAC, called IPCAC, has been initially proposed in [26]. It
is a binary classifier exploiting theoretical results presented in [4] to efficiently
estimate the Fisher subspace (Fs). More precisely, in [4] it is demonstrated that,
given a set of N clustered points sampled from an isotropic Mixture of Gaussians,
Fs corresponds to the span of the class means; as a consequence, when a binary
classification problem is considered, Fs is spanned by unit vector f = µA−µB

||µA−µB || ,

being A and B the two classes, and µA/B the class means.
IPCAC exploits this result by whitening the training set PTrain, computing f ,
and classifying a new point p as follows:

θ((W T
D f ) · p − γ) = θ(w · p − γ) ; γ =

*

argmax
γ̄∈{w·pi}

N
i=1

Score(γ̄)

+

(1)



where θ(x) = A if x ≥ 0, θ(x) = B if x < 0, the matrix WD represents the
whitening transformation estimated on the N training points, Score(γ̄) com-
putes the number of correctly classified training points when γ̄ is used as thresh-
old, and 〈·〉 represents the average operator (we may have multiple γ̄ correspond-
ing to the maximum of the Score function).
Unfortunately, the high computational complexity of classifiers based on the
estimation of Fs prevents their application to high dimensional datasets. More-
over, these techniques often fail when the training-set cardinality is equal or
lower than the space dimensionality. To address these problems, O-IPCAC (On-
line IPCAC) [28] improves IPCAC, and reduces the computational complexity, by
replacing the first step of data whitening by a ‘partial whitening’ process; if the
points to be classified belong to a D dimensional space, this method whitens the
data in the linear subspace πd = Span 〈v1, · · · ,vd〉, spanned by the first d ≪ D

principal components, while maintaining unaltered the information related to
the orthogonal subspace (πd)

⊥ = Span 〈vd+1, · · · ,vD〉.
More precisely, the linear transformation WD representing the partial whiten-
ing operator is estimated as follows. The Truncated Singular Value Decomposi-
tion [19] is applied to estimate the first d = min(log2

2
N,D) principal components,

obtaining the low-rank factorization P ≃ UdQdV
T

d (where P is the matrix rep-
resenting the training set PTrain since it contains the training vectors). The d
largest singular values on the diagonal of Qd, and the associated left singular
vectors, are employed to project on the subspace SPd, spanned by the columns
of Ud, and to perform the whitening on the points contained in P :

P̄Wd
= qdQ

−1
d P⊥SPd

= qdQ
−1
d U

T
d P = WdP

where qd is the smallest singular value of the points projected in SPd. Note
that, to obtain points whose covariance matrix best resembles a multiple of
the identity, we have chosen to set the value of the d largest singular values
to qd instead of 1, thus avoiding the gap between the d-th and the (d + 1)-th
singular value. The obtained matrix Wd projects and whitens the points in the
linear subspace SPd; however, dimensionality reduction during the whitening
estimation might delete discriminative information, decreasing the classification
performance. To avoid this information loss, we add to the partially whitened
data the residuals R of the points in P with respect to their projections on SPd:

R = P − UdP⊥SP d
= P − UdUT

d P

P̄WD
= UdP̄Wd

+ R =
`

qdUdQ−1
d

UT
d + I − UdUT

d

´

P = WDP (2)

where WD ∈ ℜD×D represents the linear transformation that whitens the data
along the first d principal components, while keeping unaltered the information
along the remaining ones.
In case of binary classification problems, once the partial whitening step has
been performed the two whitened class means, and the vector f representing
the estimated Fs in the partially whitened space, are computed; this allows
the binary predictor to compute the class labels by employing the procedure
described in [27].
The described approach increases the performance and guarantees a greater sta-
bility during the classification task. We note that O-IPCAC has been implemented



to perform both batch and online training. For convenience, in this contribution,
we refer to the batch method as TIPCAC (Truncated-whitening IPCAC).
A Kernel version of TIPCAC.
To relax the linear separability constraint imposed by the IPCAC algorithm, it
is possible to exploit the kernel trick as in the Kernel Principal Component
Analysis [32], thus obtaining the Kernel Isotropic PCA Classifier (KIPCAC, [26]).
More precisely, Rozza et al. demonstrate that a given point p can be projected
on Fs in the kernel space as follows:

projF (p) = Ker(p)T
“

(NANB)
1

2 ÃΛ̃
−1

Ã
T
N

−1
A|B

”

= Ker(p)T
w (3)

where N is the cardinality of the training set, Ker(p) = {KerFunction(pi,p)}N
i=1

is the vector of the kernel values computed between the point p and the set of the
training points pi, Λ̃ are the eigenvalues obtained by the decomposition of the
kernel matrix, Ã are the associated eigenvectors, NA, NB are the cardinalities

of the two classes, and N−1
A|B =

 

N
−1
A · · ·

| {z }

NA times

−N
−1
B · · ·

| {z }

NB times

!T

.

In this work we extend this method by exploiting the same concept at the ba-
sis of the TIPCAC partial whitening step. More precisely, we select the largest
eigenvalues that represent a fixed amount of variance defined a-priori, and we
set the remaining part of the spectrum to 1; this process reduces the overfitting
problems produced by the smallest part of the spectrum without performing any
kind of dimensionality reduction.

3 Experimental setting

3.1 Dataset

We evaluated the proposed method on a publicly available dataset1 involved in
the training of the EukP-loc method described in [12].
This dataset contains 5.618 different proteins, classified into 22 eukaryotic sub-
cellular locations. Among the 5.618 considered proteins, 5.091 belong to one
subcellular location, 495 to two locations, 28 to three locations, and 4 to four
locations. None of the proteins has ≥ 25% sequence identity to any other in
the same subset. The collection of sequences was then evaluated to compute the
Pseudo Amino Acid compositions (PseAAC) of each protein using the PseAAC

web server [30]. For each protein we produced a 495-elements vector composed
by 20 numbers describing the standard amino acid composition, 400 values rep-
resenting the PseAAC based on the dipeptide representation of the protein and
further 75 values representing three groups of 25 PseAACs values obtained by set-
ting the λ parameter to 25 and computing the PseAACs based on three pairs of
chemico-physical properties: Hydrophobicity-Hydrophilicity, pK1 (alpha-COOH)-
pK2 (NH3) and Mass-pI. In this preliminary investigation we focused on the
location prediction of the 5091 proteins with a single experimentally annotated
subcellular location. Some characteristics of this dataset are depicted in Table 1.

1 The protein sequences were downloaded in fasta format from the web site
http://www.csbio.sjtu.edu.cn/bioinf/euk-multi/Supp-A.pdf.



It is worth noting that the problem is highly unbalanced, ranging the num-
ber of proteins associated to a subcellular location from 13 (hydrogenosome,
melanosome and synapse) to 1077 (nucleus).

Table 1. Protein subcellular localization prediction dataset (5091 proteins and 22
locations). This table reports the number of annotated proteins per location; labels are
mutually exclusive, thus the problem is multiclass but not multilabel.

Dataset

acrosome proteins 17 cell wall proteins 47
Golgi proteins 157 spindle pole body proteins 17
hydrogenosome proteins 13 synapse proteins 13
lysosome proteins 59 vacuole proteins 91
melanosome proteins 13 centriole proteins 45
microsome proteins 23 chloroplast proteins 497
mitochondrion proteins 488 cyanelle proteins 85
nucleus proteins 1077 cytoplasm proteins 741
peroxisome proteins 92 cytoskeleton proteins 46
plasma membrane proteins 647 endoplasmic reticulum proteins 275
extracell proteins 609 endosome proteins 39

3.2 Methods

Decision DAG K-TIPCAC: In Section 2 an efficient binary classifier (TIPCAC) and
its kernel version (K-TIPCAC) are described, that are based on the projection of
the data on the one dimensional Fs estimated in a partially whitened subspace.
The ensemble classifier proposed in this paper is a C-class classifier that projects
the data on a C − 1 dimensional Fs estimated in a partially whitened subspace,
and then combines many binary K-TIPCACs to obtain the final prediction.
More precisely, the first step of this method evaluates the Fs of the overall
C classes by generalizing the approach used by TIPCAC; accordingly to what
observed in the previous work [28], this step reduces the training time com-
plexity. To this aim, after the partial whitening of the data, the whitened class
means {µc}

C
c=1

are computed: µc = WDµ̂c = qdUdQ−1
d

UT
d µ̂c + µ̂c − UdUT

d µ̂c,
and the orthonormal basis, ΠC−1, composed of C − 1 vectors spanning the Fs,
is computed by orthonormalizing the C − 1 linearly independent µc vectors
through the Gram-Schmidt procedure. The partially whitened training points
PWD

are then projected on the subspace ΠC−1, obtaining the set of points
PΠC−1

=
˘

F ST pi|pi ∈ PWD

¯

, where FS is the matrix whose columns span Fs.
Exploiting the points in PΠC−1

, C(C − 1)/2 K-TIPCAC binary classifiers are
trained, each discriminating two classes in a one-against-one fashion (1-vs-1),
and their results are combined by means of the Decision Directed Acyclic Graph
(DDAG) approach [24].

Support Vector Machine (SVM): Since SVM is a binary classifier, a problem
transformation is required before the application of this method to the consid-
ered multiclass prediction problem. The existing approaches to cast a multiclass
classification problem to a series of binary classification problems can be roughly
divided into two main classes: one-against-all and 1-vs-1. We applied the latter,



and thus we trained a committee of 231 probabilistic SVMs [23]. The probabili-
ties produced by each classifier were then reconciled to a multiclass prediction
via pairwise coupling [20] and a simple max rule over all the class probability
estimates was applied to make a final decision.

Ensemble of nested dichotomies (END): Nested dichotomies [17] is a stan-
dard statistical technique applied in polytomous classification problems where
logistic regression is applied by fitting binary logistic regression models to the
internal nodes composing a tree. In absence of domain knowledge it is difficult to
decide, among all the possible trees of nested dichotomies, the one to be adopted.
A possible solution [16] is to consider all the hierarchies of nested dichotomies
equally likely, and to use an ensemble of these hierarchies for prediction. In our
experiments we used the END implementation provided in WEKA and we tuned
across nd (number of dichotomies) ∈ {5, 10, 20, 40}.

Random Forest (RF): Random Forest [2] has been applied as an effective tool
for biomolecular and bioinformatics research. This method grows many classifi-
cation trees. Instances whose class needs to be predicted are classified using the
trees composing the forest. Each tree computes its own prediction, and the forest
employs a plurality voting (over all the trees in the forest) to choose the final
classification. We tuned the method using a grid search over nt (number of trees
of the forest) ∈ {10, 20, 30, 40, 50} and nf (number of features) ∈ {10, 100}.

Performance evaluation: All the compared methods were evaluated according
to a canonical 10 fold stratified cross-validation scheme. Given that the consid-
ered problem is a multiclass prediction problem affected by severe unbalance,
accuracy is not suitable for performance evaluation. Performances were thus
collected in form of F-score (harmonic mean of Precision and Recall). All the
experiments, apart those involving the DDAG K-TIPCAC, which is implemented in
MATLAB, were performed using the WEKA machine learning library [34].

4 Results

The performances achieved by the evaluated approaches averaged across all the
classes are reported in Table 2 (top). The table shows, for each method, the
best combination of parameters, Precision, Recall and F-measure. The F-scores
obtained by the evaluated methods for each subcellular location averaged across
the 10 stratified cross validation folds are reported in Table 2 (bottom). In order
to investigate if the differences between the collected per class performances
are statistically significant we performed a Wilcoxon signed ranks sum (U) test.
Results are reported in Table 3 (direction of the comparison is row-vs-column).
Considering the performances averaged across all the classes achieved by the

compared ensemble methods (see Table 2 (top)) the best performing approach
is DDAG K-TIPCAC (weighted F-score 0.390) immediately followed by the 1-vs-1
ensemble of SVMs (weighted F-score 0.368). A closer look to this table highlights
that, while all the evaluated approaches produced comparable Recall scores,
on average this comes at the cost of a reduced precision, the only exception
being represented by the DDAG K-TIPCAC ensemble. We note that input space



Table 2. Estimated performances (top table) and per class performances (bottom
table) obtained by 10 fold stratified cross validation.

Method Parameters Precision Recall F-score

DDAG K-TIPCAC kernel=RBF, σ = 8, var = 0.955 0.383 0.408 0.390

Multiclass SVM C = 10.0 G = 0.01 0.369 0.409 0.368
END nd = 40 0.351 0.393 0.355
RF nt = 50 nf = 100 0.349 0.391 0.340

END MCSVM RF DDAG K-TIPCAC proteins location

0.211 0.000 0.300 0.560 17 acrosome proteins
0.046 0.000 0.024 0.030 157 Golgi proteins
0.375 0.375 0.375 0.316 13 hydrogenosome proteins
0.000 0.000 0.033 0.213 59 lysosome proteins
0.632 0.000 0.556 0.522 13 melanosome proteins
0.000 0.000 0.000 0.114 23 microsome proteins

0.295 0.312 0.241 0.355 488 mitochondrion proteins
0.529 0.535 0.523 0.533 1077 nucleus proteins
0.000 0.000 0.000 0.047 92 peroxisome proteins

0.484 0.522 0.489 0.470 647 plasma membrane proteins
0.493 0.482 0.494 0.479 609 extracell proteins
0.175 0.218 0.157 0.267 47 cell wall proteins
0.000 0.000 0.000 0.306 17 spindle pole body proteins

0.700 0.700 0.700 0.383 13 synapse proteins
0.000 0.043 0.000 0.071 91 vacuole proteins
0.000 0.000 0.000 0.125 45 centriole proteins

0.424 0.504 0.459 0.518 497 chloroplast proteins
0.056 0.189 0.022 0.255 85 cyanelle proteins
0.247 0.235 0.211 0.290 741 cytoplasm proteins
0.000 0.000 0.000 0.059 46 cytoskeleton proteins
0.143 0.159 0.027 0.236 275 endoplasmic reticulum proteins
0.000 0.000 0.000 0.067 39 endosome proteins

Table 3. Statistical comparison of per class performances through Wilcoxon test (al-
ternative hypothesis: “greater”, direction of comparison: rows versus columns).

END MCSVM RF DDAG K-TIPCAC

END − 0.6876 0.1317 0.9970
MCSVM 0.3375 − 0.1813 0.9950
RF 0.8826 0.8348 − 0.9874

DDAG K-TIPCAC 2.689E
−05 3.073E

−05 4.449E
−05 −

reduction is present in our approach and also in other types of ensemble evaluated
in this experiment, as in the case of Random Forests. Nevertheless, the space
reduction computed by RF might be affected by a more relevant information
loss, since the input space dimensionality is reduced by means of a random
selection of subsets of features of a priori defined size. We can hypothesize that
the data transformation applied by our approach is able to produce a more
informative representation of the data than feature selection, thus leading to
better performances also in highly unbalanced multiclass classification problems
as the one involved in our experiments.
This interpretation is supported by the collected per class performances (see Ta-
ble 2 (bottom)). As we can see, despite the multiclass SVM ensemble (MCSVM)



ranks second in terms of overall F-score (after a weighted averaging of the per
class F-scores), its performances are often worse that those obtained by DDAG

K-TIPCAC. The hypothesis that the performances, on a per class basis, of DDAG
K-TIPCAC are better than those produced by all the other evaluated methods is
also supported by the Wilcoxon signed ranks sum test (see Table 3).

5 Conclusions

In this contribution we evaluated the performances of an ensemble of K-TIPCAC
classifiers in proteins subcellular location prediction. We demonstrated that the
multiclass version of K-TIPCAC is competitive with state-of-the-art methods in
one of the most difficult unbalanced multiclass classification problems in bioin-
formatics. It is worth noting that the ability of the proposed approach to effec-
tively control the precision-recall trade-off also in the prediction of small classes
is of paramount importance in real applications, when we need to reduce the
costs associated with the biological validation of new protein locations discov-
ered through in silico methods.
Considering that F-score accounts both for precision and recall and that most of
the compared methods failed completely to predict the membership of proteins to
particularly difficult subcellular locations (reported in bold-face in Table 2), we
conclude that DDAG K-TIPCAC is a promising line of research in this application
domain and we plan both to extend the proposed approach, and to provide a
deeper characterization of its performances in further investigations.
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Abstract. This paper considers the use of Random Oracles in Ensembles for
regression tasks. A Random Oracle model (Kuncheva and Rodrı́guez, 2007) con-
sists of a pair of models and a fixed, randomly created oracle that selects between
them. They can be used as the base model for any ensemble method. Previously,
they have been used for classification. The use of Random Oracles for regression
is studied using 61 data sets, regression trees as base models and several ensem-
ble methods: Bagging, Random Subspaces, AdaBoost.R2 and Iterated Bagging.
For all the considered methods and variants, ensembles with Random Oracles are
better than the corresponding version without the Oracles.

1 Introduction

Ensembles [10] are combinations of models. In many situations, an ensemble gives
better results than any of its members. Although they have been studied mainly for
classification, there are also ensemble methods for regression.

The models to be combined have to be different, otherwise the ensemble is unnec-
essary. One way to have different models is to construct them with different methods.
Nevertheless, there are ensemble methods that combine models obtained from the same
method. Most of these ensemble methods change the dataset in some way.

In Bagging [1] each member is trained with a sample of the training data. Normally,
the size of the sample is the same than the size of the original training data, but the
sample is with replacement. Hence, some training examples will appear several times
in the sample while others will not appear. The prediction of the ensemble is the average
of its members predictions.

In Random Subspaces [9] each member is trained with all the training examples,
but with a subset of the attributes. The dimension of the subspaces is a parameter of the
method. The prediction of the ensemble is also the average of the predictions.

Bagging and Random Subspaces can be used for classification and for regression.
AdaBoost [8] initially was a method for classification, but there are some variants for
regression, such as AdaBoost.R2 [5]. In these methods, each training example has a
weight. Initially, all the examples have the same weight. The construction of the ensem-
ble members must take into account the examples weights. After an ensemble member
is constructed, the examples weights are adjusted. The idea is to give more weight to
the examples with greater errors in the previous iterations. Hence, in the construction of

� This work was supported by the Project TIN2008-03151 of the Spanish Ministry of Education
and Science.



the next member, these examples will be more important. The ensemble members also
have weights, they depend on their error. In AdaBoost.R2, the predicted value of the
ensemble is a weighted median. In [18], this method was the one with the best results
among several ensemble methods for regression.

Iterated Bagging [2] is a method for regression based on Bagging. It combines sev-
eral Bagging ensembles. The first Bagging ensemble is constructed as usual. Based on
the predictions of the previous Bagging ensemble, the values of the predicted variable
are altered. The next Bagging ensemble is trained with these altered values. These val-
ues are the residuals: the difference between the real and the predicted values. Neverthe-
less, these predictions are not obtained using all the members in the Bagging ensemble.
The error of the predictions for a training example would be too optimistic, the majority
of the ensemble methods have been trained with that example. These predictions are ob-
tained using the out-of-bag estimation: the prediction for an example is obtained using
only those ensemble members that were not trained with that example. The prediction
of an Iterated Bagging ensemble is the sum of the predictions of its Bagging ensembles.
According to [15], Iterated Bagging is in general the most effective method.

Random Oracles [12] are mini-ensembles formed by two models, they can be used
as base models for other ensemble methods. The objective of using random oracles is to
have more diversity among the base classifiers that form an ensemble. This additional
diversity can improve the accuracy of the ensembles.

The rest of the paper is organised as follows. Next section explains Random Oracles.
Section 3 describes the experimental setting. The results are presented and discussed in
Section 4. In Section 5, diversity-error diagrams are used to analyze the behavior of the
base classifiers. Finally, Section 6 presents some concluding remarks.

2 Random Oracles

A Random Oracle classifier [12] is a mini-ensemble formed by a pair of classifiers
and a Random Oracle that chooses between them. It can be thought of as a random
discriminant function which splits the data into two subsets with no regard of any class
labels or cluster structure. A Random Oracle model can be used as the base model of
any ensemble method. Given a base method, the training of a Random Oracle model
consists of:

– Select randomly the Random Oracle.
– Split the training data in two subsets using the Random Oracle.
– For each subset of the training data, build a model. The Random Oracle model is

formed by the pair of models and the oracle itself.

The prediction of a test instance is done in the following way:

– Use the Random Oracle to select one of the two models.
– Return the prediction given by the selected model.

If the computational complexity of the oracle is low, both in training and prediction,
the computational complexity of a Random Oracle model is very similar to the com-
plexity of the base method. In the prediction phase, only one of the two models is used.



In the training phase, two models are built. Nevertheless, they are trained with a disjoint
partition of the training examples and the training time of any method depends, at least
linearly, on the number of training examples.

Different types of Oracles can be considered. In this work, the Linear Random Or-
acle is used. This oracle divides the space into two subspaces using a hyperplane. To
build the oracle, two different training objects are selected at random (these can be from
the same class). The points that are at the same distance from the two training objects
define the hyperplane.

The distances are calculated according to the Euclidean distance, numerical at-
tributes are scaled within [0,1], for nominal attributes we consider that the distance
is 0 or 1 depending if the two valued are different or equal.

3 Experiments

The experiments were conducted using 5�2 fold cross validation [4]. The performance
of the different methods over different datasets was measured using root mean squared
error (RMSE). The base models were Regression Trees. They were used pruned (P)
or unpruned (U). The method used for pruning was Reduced Error Pruning (REP) [6].
Ensemble size was 100.

Several ensemble methods were considered:

– Randomization. When the base method has a random element, different models can
be obtained from the same training data. Randomization is an ensemble of such ran-
domizable models, which prediction is the average of the members predictions. In
the case of of regression trees, when pruning is used, the training data is partitioned
randomly: one subset for building the tree and another for pruning. For unpruned
trees, there is not a random element.

– Bagging [1].
– Random Subspaces [9]. For the dimension of the subspaces, two values were con-

sidered: 50% and 75% of the number of attributes.
– AdaBoost.R2 [5]. This method can be used with different loss functions. Three are

proposed in [5] and used in this work: linear, square and exponential. The suffixes
“-Li”, “-Sq” and “-Ex” are used to denote the used function. Moreover, methods
based on AdaBoost can be used in two ways [7]. In the reweighting version, the
base model is trained with all the training data, it must take into account the weight
distribution. In the resampling version, the base model is trained with a sample
from the training data. This sample is constructed taken into account the weights.
These versions are denoted with “-W” and “-S”.

– Iterated Bagging [2]. Two configurations were considered 10�10 (Bagging is it-
erated 10 times, the ensemble size of each Bagging is 10) and 5�20 (Bagging is
iterated 5 times, the ensemble size of each Bagging is 20). In both cases, the maxi-
mum ensemble size is 100.

For all the configurations of these methods, two versions were considered: com-
bined or not with Random Oracles.

Moreover, other methods were included in the study, as a baseline for the compar-
isons:



– A single Regression Tree, with or without pruning.
– Linear regression. Two versions were considered: using all the features and using

only the selected features with the method described in [16].
– Nearest neighbors. There are two versions, in the first one the number of neighbors

is 1. In the other, the number of neighbors is selected using “leave one out”.

Weka [17] was used for the experiments. It includes the base method (Multilayer
Perceptron), Bagging and Random Subspaces. The rest of the methods (i.e., Iterated
Bagging and AdaBoost.R2), were implemented in this library.

Table 1 shows the characteristics of the 61 considered datasets. They are available
in the format used by Weka1. 30 of them were collected by Luis Torgo2.

4 Results

In order to compare all the configurations considered, average ranks [3] were used. For
each dataset, the methods are sorted according to their performance. The best method
has rank 1, the second rank 2 and so on. If there are ties, these methods have the same
rank, the average value. For each method, its average rank is obtained as the average
value over all the considered datasets. According to [3], “average ranks by themselves
provide a fair comparison of the algorithms”.

Table 2 shows the methods sorted according to their average ranks. The prefix “O-”
denotes methods that use Random Oracles. The 12 top positions are for methods that
use Random Oracles.

For a method that uses Random Oracles, the benefit is defined as the difference
between the average ranks of the corresponding method without Random Oracles and
the method with Random Oracles. In Table 2, all the benefits are positive.

When comparing two methods, the number of datasets where one method has bet-
ter, equal, or worse results than the other is calculated. According to [3], using a sign
test, one method is significantly better than other, with a confidence level of 0.05, if the
number of wins plus half the ties is at leastN{2�1.96

?
N{2. ForN � 61 datasets, this

number is 39. Table 2 shows, in the columns denoted as W/T/L, the paired comparisons
of methods with Random Oracles and the corresponding methods without Random Or-
acles. The symbol “”denotes significant differences.

The number of wins, ties and losses and the average ranks are calculated using a
direct comparison of the results for the different methods: less, equal or greater. Never-
theless, they do not take into account the size of the differences. For this purpose, we
use the quantitative scoring [14, 18]. Given the results for two methods i and j in one
dataset, this score is defined as

Si,j � RMSEj �RMSEi

maxpRMSEi, RMSEjq
Where RMSEi is the root mean squared error for the method i. Unless both methods
have zero error, this measure will be between �1 and 1, although it can be expressed as
a percentage. The sign indicates which method is better.

1 http://www.cs.waikato.ac.nz/ml/weka/index_datasets.html
2 http://www.liaad.up.pt/˜ltorgo/Regression/DataSets.html



Table 1. Datasets used in the experiments.

Dataset Examples Numeric Nominal
2d-planes 40768 10 0
abalone 4177 7 1
ailerons 13750 40 0
auto93 93 16 6
auto-horse 205 17 8
auto-mpg 398 4 3
auto-price 159 15 0
bank-32nh 8192 32 0
bank-8FM 8192 8 0
baskball 96 4 0
bodyfat 252 14 0
bolts 40 7 0
breast-tumor 286 1 8
cal-housing 20640 8 0
cholesterol 303 6 7
cleveland 303 6 7
cloud 108 4 2
cpu-act 8192 21 0
cpu 209 6 1
cpu-small 8192 12 0
delta-ailerons 7129 5 0
delta-elevators 9517 6 0
detroit 13 13 0
diabetes-numeric 43 2 0
echo-months 130 6 3
elevators 16599 18 0
elusage 55 1 1
fishcatch 158 5 2
friedman 40768 10 0
fruitfly 125 2 2
gascons 27 4 0

Dataset Examples Numeric Nominal
house-16H 22784 16 0
house-8L 22784 8 0
housing 506 12 1
hungarian 294 6 7
kin8nm 8192 8 0
longley 16 6 0
lowbwt 189 2 7
machine-cpu 209 6 0
mbagrade 61 1 1
meta 528 19 2
mv 40768 7 3
pbc 418 10 8
pharynx 195 1 10
pole 15000 48 0
pollution 60 15 0
puma32H 8192 32 0
puma8NH 8192 8 0
pw-linear 200 10 0
pyrimidines 74 27 0
quake 2178 3 0
schlvote 38 4 1
sensory 576 0 11
servo 167 0 4
sleep 62 7 0
stock 950 9 0
strike 625 5 1
triazines 186 60 0
veteran 137 3 4
vineyard 52 3 0
wisconsin 194 32 0
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Fig. 1 shows these scores (as percentages) for the considered methods, comparing
the versions with and without Random Oracles. The score is calculated for each dataset
and the datasets are sorted according to its score. The number of values above and below
zero corresponds with the number of wins and losses in Table 2.
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Fig. 1. Comparison scores.

When comparing two methods with these graphs, it is desired to have more positive
values than negative, but it is also desirable that the absolute values were greater for
positive scores than for negative scores. In this case there are more positive values, and
the greater absolute scores are also for positive values.



Results of ensemble methods depend on the ensemble size, the number of combined
models. Figures. 2 and 3 show, for the different data sets, the error as a function of the
number iterations (from 1 to 100). The graphs show the error for AdaBoostR2-S-Ex (P)
with and without Oracles. In general, the results are better with the Oracles. For some
data sets (e.g., strike), the error increases with the number of iterations. This indicated
that AdaBoostR2 is not always robust with respect to the ensemble size.

Fig. 4 shows a comparative of the versions with and without Oracles, as a function of
the ensemble size. For Bagging (U) and AdaBoostR2-S-Ex (P), it shows the proportion
of data sets where the version with Oracles is better than the version without Oracles. In
the case of ties, they are considered as half a victory. If the ensemble size is very small,
five or less, the version without Oracles can be better, but otherwise the advantage is for
the version with Oracles.

5 Diversity-error diagrams

Successful ensembles are formed by models with low errors, but that are diverse. These
two objectives are contradictory, because if the errors of two models are small, they can-
not be very different. Several diversity measures had been proposed in order to analyze
the behaviour of ensemble methods [11].

One of the techniques used is diversity-error diagrams [13]. They are scatter plots,
there is a point for each pair of models. The horizontal axis represents the diversity
between the two models, for classification, usually κ (kappa) is used. The vertical axis
represents the average error of the two models.

In regression, several error measures can be considered, in this work RMSE was
used:

RMSE �
gffe

ņ

i�1

pai � piq2
n

Where ai are the actual values and pi are the predicted values.
For measuring the diversity, the RMSE of one of the models with respect to the

other was used:

RMSE �
gffe

ņ

i�1

pqi � piq2
n

Where pi and qi are the predictions of the two models. Note that with this measure,
bigger values indicate more diversity, while for kappa, bigger values indicated less di-
versity.

Fig. 5 shows these diagrams for AdaBoostR2-S-Ex (P) and Bagging (U) with and
without oracles. In general, when using oracles the base classifiers are more diverse.

6 Conclusions

The performance of Random Oracles for regression ensembles have been studied, us-
ing 61 data sets and regression trees as base models. They have been combined with



2dplanes abalone ailerons auto93

auto-horse auto-mpg auto-price bank-32nh

bank-8FM baskball bodyfat bolts

breast-tumor cal-housing cholesterol cleveland

cloud cpu-act cpu cpu-small

delta-ailerons delta-elevators detroit diabetes-numeric

echo-months elevators elusage fishcatch

fried fruitfly gascons

AdaBoostR2-S-Ex

O-AdaBoostR2-S-Ex

Fig. 2. Error as a function of the number of iterations for the different data sets, first part.



house-16H house-8L housing hungarian

kin8nm longley lowbwt machine-cpu

mbagrade meta mv pbc

pharynx pol pollution puma32H

puma8NH pw-linear pyrim quake

schlvote sensory servo sleep

stock strike triazines veteran

vineyard wisconsin

AdaBoostR2-S-Ex

O-AdaBoostR2-S-Ex

Fig. 3. Error as a function of the number of iterations for the different data sets, second part.



 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60  70  80  90  100

%
 o

f 
w

in
s

ensemble size

AdaBoostR2-S-Ex (P)

Bagging (U)

Fig. 4. Evolution of the percentage of wins when comparing the version with Oracle and the
version without.

au
to

93
au

to
-m

pg
ba

nk
-8

FM

Fig. 5. Diversity error diagrams. The centers are marked with the symbol 
.



Bagging, Random Subspaces, AdaBoost.R2 and Iterated Bagging. For all the config-
urations considered using Random Oracles gives better results. The cause for these
improvements can be the increased diversity of the base classifiers, as shown by the
diversity-error diagrams.
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Learning Markov Blankets for Continuous or
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Abstract. Learning Markov Blankets is important for classification/regression,
causal discovery, and Bayesian network learning. We present an argument
that ensemble masking measures can provide an approximate Markov
blanket. Consequently, an ensemble feature selection method can be used
to learn Markov blankets for either discrete or continuous networks (with-
out linear, Gaussian assumptions). We use masking measures for redun-
dancy and statistical inference for feature selection criteria. We compare
our performance in the causal structure learning problem to a collection
of common feature selection methods. We also compare to Bayesian lo-
cal structure learning. These results can also be easily extended to other
casual structure models such as undirected graphical models.

1 Introduction

Structure learning in Bayesian networks is an important step for causal inference,
and Markov Blanket causal discovery algorithms can be helpful for learning the
structure of Bayesian networks. Here we argue that ensemble masking measures
(applied in decision tree ensembles) can provide an approximate Markov blan-
ket. This result implies that an ensemble feature selection method can effectively
learn Markov blankets for either discrete or continuous networks. Thus, Markov
blanket learning can initialize a causal structure learning algorithm. In particu-
lar, the ensemble methods can be used in continuous network structure learning
without the strong linear, Gaussian assumptions. There are well-known contexts
where the linear and Gaussian assumptions common in continuous Bayesian net-
works (BN) do not hold (e.g, fMRI [1]). Mixed BNs provide other examples. The
sensitivity of BN learning to linearity assumptions was described by [2]. Also,
[3](LIMGAM) considered for the learning of causal structure, along with the
inference in such models. More recent work by [4] indicated the importance of
relaxed assumptions.

There are few studies that applied feature selection methods to learning
causal structure in continuous networks. A linear regression model was extended
by [5] to learn structure in a Gaussian undirected graph model. [6] applied SVM-
RFE method to discover causal structure and proposed their methods for learn-
ing continuous Gaussian Bayesian networks with linear causal relations. A more
related work was by [7](C5C). C5C uses the features selected from C5.0 rules



to identify Markov blankets of a discrete Bayesian network. However, the C5C
algorithm still needs prior specification for the importance threshold. Further-
more, it is based on only one decision tree, and the greedy nature of a single tree
could lead to local optimum.

The masking measure relationship to approximate Markov blanket learning
suggests an ensemble-based feature selection method such as ACE [8] should be
effective to initialize structure learning. Consequently, we compare a set of com-
monly used minimum relevancy, maximum redundancy feature selection meth-
ods to learn Markov blankets in Bayesian networks along with ACE. Therefore,
the structure learning problem is studied under a collection of feature selec-
tion methods. We focus here on continuous learning experiments and illustrate
performance without the common strong assumptions. A discrete network ex-
ample illustrates that an ensemble-based method can also generalize to discrete
networks. Finally, our work focuses on learning causal structure in Bayesian net-
works. However, it can be easily extended to other causal graphical models such
as undirected graphical models.

In Section 2 we describe the feature selection approach and provide an argu-
ment that a masking measure defines an approximate Markov blanket. In Section
3 we provide experiments for local structure learning in continuous networks for
both linear and nonlinear models and with and without Gaussian assumptions.
We also provide an example for one discrete Bayesian network to illustrate that
our method can generalize. Section 4 provides conclusions.

1.1 Learning Bayesian networks via feature selection

Let F be a full set of variables. Given a target variable Y , let MB(Y ) ⊂ F
and Y /∈ MB(Y ), MB(Y ) is said to be a Markov Blanket (MB) for Y if Y ⊥
(F −MB)|MB. That is, Y is conditionally independent of other features given
MB. A MB can be considered the objective of a feature selection algorithm.
However, redundant features can replace others in a feature subset. In reality, it
is not so straightforward to determine feature redundancy if a feature is partially
correlated to a set of features.

An MB is important for learning a Bayesian Network structure because a MB
is useful for discovering the causal relationship of Y . Under certain conditions
(faithfulness to a Bayesian Network), MB(Y ) is identical to Y ’s parents, its
children, and its children’s other parents (co-parents) [9]. Therefore, Markov
Blanket causal discovery algorithms can be helpful for learning the structure of
Bayesian networks. By [10], MB(Y ) for all Y are identified first, and then MB(Y )
are used to construct the Bayesian network of the domain. Algorithms (e.g., [9])
have been proposed for identifying Markov Blankets in a Bayesian Network.

MB learning is also closely related to feature selection and [11] stated that
MB is an optimal solution for a feature selection method. The MB definition is
similar to the maximal relevancy and minimal redundancy principle used in [12],
and [13]. There are common characteristics between current MB learning and
feature selection algorithms. For example, the feature selection methods [14],
[13], select relevant features in a forward phase and remove redundant features



in a backward phase (similar to the two phases described in a Markov Blanket
learning algorithm [9]).

Therefore, those feature selection methods maximizing relevancy and min-
imizing redundancy could be used for learning Markov blankets and thus for
learning causal structure in networks. [7] and [6] showed the advantages of fea-
ture selection methods over a Bayesian network learning algorithm for learning
causal structure. Furthermore, most Bayesian network learning algorithms are
designed to learn either networks with discrete variables or networks with con-
tinuous variables under the gaussian-distribution, linear-relation assumptions.
The ACE feature selection method used here can deal with mixed categorical
and continuous variables free of distributions and relations [8]. Therefore, the
method can be used to learn local causal structure in both discrete and contin-
uous Bayesian networks without any distribution and relation assumption.

Current feature selection approaches have been successfully used in ranking
the importance of variables [15], [16] or selecting a maximal relevancy and mini-
mal redundancy set [12], [14]. In classification and regression problems, it is well
known that selecting a combination of most important individual features can
not necessarily produce the best result. Therefore, a feature selection for purpose
of supervised learning should be designed to maximize relevancy and minimize
redundancy.

2 Feature selection framework

The framework of our method is outlined in Algorithm 1 (shown for a regression
problem) and with notation summarized in Table 1. A similar algorithm applies
to classification problems. Several iterations of feature selection are considered
to include important features, but possibly weaker than a primary set. In each
iteration, only the important features are used to predict the target and gen-
erate residuals (targets minus model predictions for regression). In subsequent
iterations, the feature selection is applied to the residuals. However, all variables
are input to the feature selection module that builds the ensembles—not only
the currently important ones. This is to recover partially masked variables that
still contribute predictive power to the model. This can occur after the effect
of a masking variable is completely removed, and the partial masking is elimi-
nated. Based on important features, the redundancy elimination module selects
a non-redundant feature subset. Brief comments for the functions SelectFeatures
and RemoveRedundant are provided below and further details were provided by
[8].

2.1 Feature importance measure

Relevant feature selection is based on an ensemble of decision tees. Trees handle
mixed categorical and numerical data, capture nonlinear interactions, are simple,
fast learners. Trees also provide intrinsic feature selection scores through split
values. We briefly summarize here and details were provided for the ACE feature



Algorithm 1: Ensemble-Based Feature Selection

1. Set Φ← {}; set F ← {X1, . . . , XM}; set I = 0 (|I| = M)

2. Set [Φ̂,∆I] = SelectFeatures(F, Y )

3. Set Φ̂ = RemoveRedundant(Φ̂)

4. If Φ̂ is empty, then quit

5. Φ← Φ ∪ Φ̂

6. I(Φ̂) = I(Φ̂) +∆I(Φ̂)

7. Y = Y − gY (Φ̂, Y )
8. Go to 2.

F set of original variables
Y target variable
M Number of variables
I cumulative variable importance vector
Φ set of important variables
∆I current vector of variable importance scores

from an ensemble

∆I(Φ̂) current variable importance scores

for the subset of variables Φ̂
gY (F, Y ) function that trains an ensemble based on variables F

and target Y , and returns a prediction of Y

Table 1. Notation in Algorithm 1

selection algorithm by [8]. For a single decision tree, the measure of variable
importance is V I(Xi, T ) =

∑
t∈T △I(Xi, t) where △I(Xi, t) is the impurity

decrease due to an actual split on variable Xi at a node t of tree T . Impurity
measure I(t) for regression is defined as

∑
i∈t(yi − ȳ)2/N(t), where yi is the

response of observation i in node t, and ȳ is the average response for all N(t)
observations in node t. For classification, I(t) equals the Gini index at node t

Gini(t) =
∑
i̸=j

ptip
t
j (1)

where pti is the proportion of observations with y = i and i and j run through
all target class values. The split weight measure △I(Xi, t) can be improved if
out-of-bag (OOB) samples are used. The split value for the selected variable is
calculated using the training data. However, only the OOB samples are used to
select the feature as the primary splitter. The experiments show that this pro-
vides a more accurate estimate of variable importance, and mitigates the cardi-
nality problem of feature selection with trees [15] (where features with greater
numbers of attributes values are scored higher by the usual metrics). Then, the



importance score in a ensemble can be obtained by averaging over the trees

E(Xi) =
1

M

M∑
m=1

V I(Xi, TM ) (2)

Furthermore, a statistical criterion is determined through the use of artificial
features (permutations of the actual features). Variable importance scores for
actual features are compared to the distribution of scores obtained for the artifi-
cial features. Replicates of the ensembles are also used so that a statistical t-test
can generate a p-value for the importance score of an actual feature. Further
comments are provided below.

2.2 Feature masking measure and its relationship to Markov
blanket

Next we define a feature masking measure and argue the measure can be used
to define an approximate Markov blanket. An important issue for variable im-
portance in tree-based models is how to evaluate or rank variables that were
masked by others with slightly higher splitting scores but could provide as ac-
curate a model if used instead. One early approach in the CART methodology
used surrogate splits [15]. The predictive association of a surrogate variable Xs

for the best splitter X∗ at a tree node T is defined through the probability that
Xs predicts the action of X∗ correctly and this is estimated as

p(Xs, X∗) =
pL(X

s, X∗) + pR(X
s,X∗)

N
(3)

where pL(X
s, X∗) and pR(X

s, X∗) define the estimated probabilities that
both Xs and X∗ send a case in T left (right).

The predictive measure of association λ(X∗|Xs) between Xs and X∗ is de-
fined as [8]:

λ(Xs|X∗) =
min(πL, πR)− (1− p(Xs,X∗))

min(πL, πR)
(4)

where πL(πR) are the proportions of cases sent to left(right) by X∗. Here
1 − p(Xs, X∗) measures the error using the surrogate Xs for X∗, min(πL, πR)
measures the error of the naive surrogate that assigns all cases according to
max(πL, πR). If λ(X

s, X∗) < 0, then Xs is disregarded as a surrogate for X∗.
Sometimes a small, nonnegative threshold is used instead of 0.

Equation (4) only measures the association at a node, we now extend it to
define a masking score as follows. Variable i is said to mask variable j in a tree,
if there is a split in variable i in a tree with a surrogate on variable j. We define
the masking measure for a pair of variables i, j in tree T as

Mij(T ) =
∑

{t∈T,split on Xi}

w(Xi, t)λ(Xi|Xj) (5)



where w(Xi, t) = ∆I(Xi, t) is the decrease in impurity from the primary split on
variableXi, and summation is done over the nodes where primary split was made
on variable Xi. Here we take into account both the similarity between variables
Xi, Xj at the node, and the contribution of the actual split of variable Xi to
the model. For an ensemble the masking measure is simply averaged over the
trees. Note that in general the measure is not symmetric in the variables,e.g., Xi

may mask Xj , but the reverse may not be true (one variable may mask several
others, but for a single selected masked variable the reverse may not be true).

In order to show that the masking measure corresponds to the Markov Blan-
ket criterion, we now to proceed show that if masking is strong, that is, if the
predictive measure of association λ approaches one, then excluding the masked
variable has no effect on the conditional distribution of the target as measured by
cross-entropy. Of course, this only determines conditional independence, which
is weaker than the Markov Blanket condition, but can well be used to define an
approximate Markov Blanket.

Now, it is intuitively sensible that masking variable Xi, with globally high
predictive association with masked variable Xj , might be a good candidate for
a Markov Blanket for Xj . We use expected KL-divergence δ(Xi|Xj) to estimate
how close Xi is to being a Markov Blanket for Xj . Consider

δ(Xi|Xj) =
∑
xi,xj

Pr(Xi = xi, Xj = xj) ·D(Pr(C|Xi = xi, Xj = xj), P r(C|Xi = xi))

(6)

where the KL-divergence D(p, q) between two distributions p and q is defined
as
∑

c∈C pc log
pc

qc
. In fact, it is easy to see that our masking measure between

two variables computed in a tree node behaves very similar to cross-entropy
δ(Xi|Xj) locally. Specifically λ(Xi|Xj) → 1 leads to δ(Xi|Xj) → 0.

Consider a case when node T , has a stronger primary splitter Xi masking
a surrogate Xj with a high predictive association λ(Xi|Xj) ∼ 1 . Then a four-
node tree T ∗ with a split on Xi followed by splits on Xj locally approximates
P (C|Xi, Xj) , and a four-node tree T s with three splits using only Xi approxi-
mates P (C|Xi). We will show that δ(Xi|Xj) ∼ 0. Because trees T ∗ and T s have
a common root split, it suffices to demonstrate δ(Xi|Xj) ∼ 0 between the left
(or right) two-node subtrees of T ∗ and T s, constructed using Xi and Xj split-
ters, correspondingly. For simplicity we keep the same notations T ∗ and T s for
the corresponding two-node subtrees, and assume that the root nodes of both
T ∗ and T s have n samples. Note that n samples could be partitioned in four
disjoint sets: n = nLL + nLR + nRL + nRR where nLL is a number of samples
sent by both Xi and Xj to the left nodes of T ∗ and T s correspondingly; nLR

is a number of samples sent by Xi to the left node of T ∗ but sent to the right
node of T s by Xj ; nRL and nRR are defined in the same way. Let also n∗

Lc be a
number of samples in T ∗ of class c sent to the left by Xi; quantities n∗

Rc , ns
Rc

,ns
Lc are defined similarly. Then

δ(Xi|Xj) =

C∑
c=1

(
nLL

n
·
n∗
Lc

n
log

n∗
Lc

ns
Lc

+
nRR

n
·
n∗
Rc

n
log

n∗
Rc

ns
Rc

+
nLR

n
·
n∗
Lc

n
log

n∗
Lc

ns
Rc

+
nRL

n
·
n∗
Rc

n
log

n∗
Rc

ns
Lc

)

(7)



For the last two terms in (7) we see that

nLR

n
· n

∗
Lc

n
log

n∗
Lc

ns
Rc

+
nRL

n
· n

∗
Rc

n
log

n∗
Rc

ns
Lc

≤ nLR

n
· logn+

nRL

n
· logn

= log n · (1− nLL + nRR

n
) < log(n) · (1− λ(Xi|Xj))→ 0 as λ→ 1

Denote nLLc a subset of nLL samples that belongs to class c, then for the

first term in (7) we have nLL

n · n∗
Lc

n log
n∗
Lc

ns
Lc

≤ log
n∗
Lc

ns
Lc

= log nLLc+nLRc

nLLc+nRLc
, but

max(nLRc, nRLc) ≤ max(nLR, nRL) ≤ nLR+nRL = n−nLR−nRL → 0 as λ → 1
hence, the upper bound for the first term log(nLLc + nLRc)/(nLLc + nRLc) →
0 as λ → 1 The same exact argument applies for the second term in (7), and
therefore δ(Xi|Xj) → 0 as λ(Xi|Xj) → 1.

We have just shown that the defined masking measure indeed corresponds
to KL-divergence and thus provides an approximately optimal means to remove
redundant variables based on the Markov Blanket criterion. We next describe
an efficient algorithm to make use of the measure.

2.3 Statistical criteria for identifying relevant and redundant
features

For deleting irrelevant or redundant features, a threshold is needed. Artificial
contrasts can be used to construct and specify the threshold in an efficient way.
Let the number of variables be M . Denote the variables set as SX = {Xj , j =
1, 2, ...K}. In each replicate r, r = 1, 2, ...R, artificial variables are generated as
follows. For every variable Xj in SX , a corresponding artificial variables Zr

j is
generated from randomly permutating values ofXj , let S

r
Z = {Zr

j , j = 1, 2, ...K}.
Then the new variables set can be denoted as Sr

X,Z = {SX , Sr
Z}.

Consider relevant variables selection. Denote the importance score of Sr
X,Z

as IrX,Z = {IrX , IrZ}, where IrX = {IrXj
, j = 1, 2, ...M)} and IrZ = {IZr

j
, j =

1, 2, ...K)}, IrXj
and IZr

j
are the importance scores of Xj and Zr

j at the rth

replicate respectively. Denote IXj = {IrXj
, r = 1, 2, ...R}. Then IrX,Z can be

obtained by using relevant feature selection methods to Sr
X,Z . Denote Irα as the

1− α percentile value of IrZ and Iα = {Irα, r = 1, 2, ..., R}. For each variable Xj ,
a paired t-test compares IXj to Iα. A test that results in statistical significance,
i.e., a suitably small p-value, identifies an important variable. Therefore, an
important variable here need consistently score higher than the artificial variables
over multiple replicates.

Consider redundancy elimination. Let Mr
Xi,Xj

for j = 1, 2, ...i−1, i+1, ...,K
and Mr

Xi,Zj
for j = 1, 2, ...,K denote the masking score of Xi over Xj , and

over Zr
j for replicate Sr

X,Z respectively. Denote Mr
Xi,α

as the 1 − α percentile
value of Mr

Xi,Zj
and MXi,α = {Mr

Xi,α
, r = 1, 2, ..., R}. A paired t-test compares

between Mr
Xi,Xj

and MXi,α. Variable Xj is masked by variable Xi if the test is
significant.



2.4 Residuals for multiple iterations

A single iteration in Algorithm 1 can select a relevant and non-redundant feature
set, but it may fail to detect some variables that are important but possibly
weaker than a primary set. Thus, more iterations are considered here. At the
end of each iteration, a subset of features Φ̂ can be obtained. An ensemble model
gY (Φ̂) is built on Φ̂. Denote Ŷ as the OOB prediction of gY (Φ̂). Then residuals
are calculated and form a new target. For a regression problem, the new target
is simply formed by: Y = Y − Ŷ . For a classification problem, residuals are
calculated from a multi-class logistic regression procedure. Log-odds of class
probabilities for each class are predicted (typically a gradient boosted tree [17]is
used), and then pseudo-residuals are taken as residuals.

In a Bayesian network, sometimes non-causal, but relevant variables, can
also contribute to the target. Though the contribution from those non-causal
but relevant variables could be small compare to causal related variables, ACE
adds them into the feature set. Therefore, false alarm rates might be increased.
The Bonferroni correction is a multiple-comparison correction used when several
statistical tests are performed simultaneously. The Bonferroni correction is used
here to reduce the false positive rate. For example, if the p-value of t-test in the
previous sections is α, the p-value is reduced to α/N when there are N features.

3 Experiments

The work here focuses on continuous Bayesian networks, but we add an example
from a discrete network that also illustrates that the method easily generalizes–
the discrete networks results are equally good. We applied our method and the
feature selection methods CFS [14], SVM-RFE [13], and FCBF [18] to learn
the MB of the target nodes. The performance is also compared to a well-known
Bayesian local structure learning algorithm (MMPC) [19]. In the experiments,
ACE [8] is programmed in C, and RWeka [20, 21] and bnlearn [22] in R [23]
are used to run the other algorithms. The default parameter setting for the
methods in the software are used. To evaluate the performance of an algorithm,
we measure the sensitivity and specificity for a given task. The sensitivity is the
ratio of the number of correctly identified variables in the MB over the size of
the true MB. The specificity is the ratio of the number of correctly identified
variables as not belonging in the MB over the true number of variables not in
MB [19]. To compare different algorithms, we follow the same terminology that
was used by [19] and define a combined measure d:

d =
√
(1− sensitivity)2 + (1− specificity)2 (8)

A better algorithm implies a smaller d value.

3.1 Continuous, Gaussian local structure learning

There are few available continuous benchmark causal-structure network (the fo-
cus is on discrete networks). Therefore, we simulated a causal-structure network



with continuous nodes as shown Figure 1. Bayesian structure learning often as-
sumes Gaussian models whereas the ensemble-based ACE method is not limited
to the such models. The first experiment uses the common Gaussian distributions
for these experiments, and a second experiment relaxes this assumption. Because
FCBF and SVM-RFE (in RWeka [20, 21]) do not work with continuous target
variables, only ACE, MMPC and CFS with best first search (CFSBestFirst) and
gene search (CFSGene) are applied to this data.

Consider the network in Figure 1. For the first experiment nodes A,B,C are
root nodes and follow normal distributions N(1,1), N(2,1) N(3,1), respectively,
where N(µ, σ2) denotes a normal distribution with mean µ and variance σ2.
Denote a node (not a root node) as Ni, and denote the parent nodes of Ni as
Np

i (j), j = 1, ..., |Np
i |, where |N

p
i | is the number of parent nodes ofNi. The causal

relation between Ni and Np
i (j) is expressed by Ni = f(Np

i (j)). We considered

Ni =
∑|Np

i
|

j=1 (N
p
i (j))+ ε or Ni =

∏|Np
i
|

j=1 (N
p
i (j))+ ε where ε ∼ N(0, 1). Therefore,

we can investigate both linear and nonlinear causal relationships in the network.
For example, in Figure 1, the linear causal relationship between node D and
its parent nodes A, C is D = A + C + ε. The nonlinear causal relationship is
D = A ∗C + ε. For each of the continuous Bayesian networks, 5000 rows of data
are simulated. The objective is to learn the MB of the output nodes.

A ~ N(1,1) B ~ N(2,1) C ~ N(3,1)

D = f(A,C) E = f(A,B) F = f(B,C)

G = f(D,F) H = f(D,E) I = f(E,F)

Fig. 1. Nodes with thick edges (yellow) are
taken as targets. The function f is taken as
either an additive or multiplicative function
of the inputs.
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Prob6
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GrbldOtpt

Fig. 2. Local structure of the Windows
printer network with regard to targets

The results for the linear and non-linear cases are shown in Table 2. For
the linear Bayesian network, it is well known that linear relationships are not
optimal for a tree representation, but well-suited for correlation-based methods.
Still, ACE has the lowest d value. The other three methods have the same d
value. For the non-linear network, the challenge of learning increases, and the d
of all methods increase. ACE still produces the smallest d value.

3.2 Continuous, nonGaussian local structure learning

For the nonGaussian experiment the distributions for nodesA,B,C were changed
to Normal(0, 1), Exponential(1), Uniform(−1, 1) respectively. Other charac-



Table 2.Measure d for each output node from different algorithms learning continuous,
Gaussian, linear and nonlinear Bayesian networks

Linear NonLinear

G H I Average G H I Average

ACE 0.00 0.00 0.17 0.06 0.00 0.33 0.00 0.11

CFSBestFirst 0.33 0.33 0.33 0.33 0.50 0.67 0.83 0.67

CFSGene 0.33 0.33 0.33 0.33 0.50 0.67 0.67 0.61

MMPC 0.33 0.33 0.33 0.33 1.00 0.33 0.97 0.77

teristics of the experiment (including the linear and nonlinear target functions)
were the same as in the Gaussian case.

Table 3.Measure d for each output node from different algorithms learning continuous,
nonGaussian, linear and nonlinear Bayesian networks

Linear NonLinear

G H I Average G H I Average

ACE 0.00 0.00 0.33 0.11 0.50 0.50 0.67 0.56

CFSBestFirst 0.33 0.17 0.17 0.22 1.12 1.20 0.71 1.01

CFSGene 0.33 0.17 0.17 0.22 1.12 1.20 0.71 1.01

MMPC 0.50 0.50 0.33 0.44 1.12 1.20 0.71 1.01

For both nonGaussian linear and nonlinear networks, ACE is still better than
the other three methods. CFSBestFirst outperforms MMPC in the nonGaussian
linear case while they have similar performance in other cases. Consequently,
feature selection methods can provide reasonable alternatives to the MMPC al-
gorithm in continuous networks. Furthermore, it is more difficult for all methods
to learn a nonlinear relationship than a linear relationship in the nonGaussian
cases.

3.3 Discrete local structure learning

Although our focus is continuous network structure, a discrete Bayesian net-
work is also considered. The network is Windows printer trouble shooting with
76 features and 10000 observations were generated with the GeNIe structural
modeling tool (http://genie.sis.pitt.edu/). Due to limitations of space, only the
local structure with regard to the targets of the network are illustrated in Figure
2. Here 6 nodes (printer problem nodes) are considered as the targets (each with
binary classes). ACE, MMPC, FCBF, CFSBestFirst, CFSGene, SVM-RFE are
compared based on learning the local structure of the Bayesian networks. Be-
cause SVM-RFE requires the number of features to be selected as an input, we
assign the number of features in two ways: the size of the correct Markov Blanket
and the number of features selected by ACE. We refer the SVM-RFE with these



two parameters as SVM(MB) and SVM(ACE), respectively. The results from
the Windows printer trouble shooting network are shown in Table 4.

Table 4. Measure: d of outputs from different algorithms learning the Windows printer
network. SVM(MB) is given the correct number of features, and SVM(ACE) is given
the number of features selected by ACE

Pro1 Prob2 Prob3 Prob4 Prob5 Prob6 Average

ACE 0.00 0.00 0.33 0.00 0.00 0.67 0.167

CFSBestFirst 0.11 0.03 0.34 0.04 0.34 0.34 0.199

CFSGene 0.34 0.19 0.41 0.37 0.25 0.19 0.292

FCBF 0.00 0.03 0.67 0.04 0.34 0.67 0.291

MMPC 0.00 0.04 0.67 0.33 0.03 0.67 0.289

SVM(ACE) 0.00 0.00 0.67 0.00 0.00 0.67 0.222

SVM(MB) 0.00 0.00 0.33 0.00 0.00 0.33 0.111

For the Windows printer network, ACE and SVM(MB) have the lowest d val-
ues. SVM(MB) only outperforms ACE for the target Prob6. However, SVM(MB)
is given the priori knowledge of the size of true MBs. With the number of vari-
ables selected by ACE as input, SVM(ACE) does not perform as well as ACE.
Another feature selection method CFSBestFirst also provides better results than
MMPC.

4 Conclusions

Structure learning is important for both discrete and continuous networks, and
relaxed Gaussian assumptions are important for continuous networks. A rela-
tionship between ensemble masking and Markov Blankets is argued here and
exploited for a generalized feature selection method to handle discrete and con-
tinuous cases for local structure learning. Common feature selection methods,
along with a Bayesian structure algorithm, are compared for the structure learn-
ing problem, and experiments illustrates the strength of an ensemble-based fea-
ture selection approach in these cases.
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Abstract. One of the methods used to evaluate the performance of en-
semble classi�ers is bias and variance analysis. In this paper, we analyse
bagging and ECOC ensembles using bias-variance domain of James [1]
and make a comparison with single classi�ers, when using Neural Net-
works (NNs) as base classi�ers. As the performance of the ensembles
depends on the individual base classi�ers, it is important to understand
the overall trends when the parameters of the base classi�ers, nodes and
epochs for NNs, are changed. We show experimentally on 5 arti�cial and
4 UCI MLR datasets that there are some clear trends in the analysis that
should be taken into consideration while designing NN classi�er systems.

1 Introduction

Within machine learning research, many techniques have been proposed in order
to understand and analyse the success of ensemble classi�cation methods over
single-classi�er classi�cations. One of the main approaches considers tightening
the generalization error bounds by using the margin concept [6]. Though theo-
retically interesting, bounds are not usually tight enough to be used in practical
design issues. Bias and variance analysis is another method used to show why
ensembles work well. In this paper, we try to analyse the success of bagging
[22] and Error Correcting Output Coding (ECOC) [4] as ensemble classi�cation
techniques, by using Neural Networks (NNs) as the base classi�ers and zero-one
loss as the loss function within the bias and variance framework of James [1].
As the characteristics of the ensemble depend on the speci�cations of the base
classi�ers, having a detailed look at the parameters of the base classi�ers within
the bias-variance analysis is of importance. Similar work for bagged Support
Vector Machines (SVMs) within Domingos' bias-variance framework [7] can be
found in [19].

ECOC is an ensemble technique [4], in which multiple base classi�ers are
trained according to a preset binary code matrix. Consider an ECOC matrix C,
where a particular element Cij ε(+1,−1) indicates the desired label for class i, to
be used in training the base classi�er j. The base classi�ers are the dichotomizers
which carry out the two-class classi�cation tasks for each column of the matrix,
according to the input labelling. Each row, called a codeword, represents the



desired output for the whole set of base classi�ers for the class it indicates. During
decoding, a given test sample is classi�ed by computing the similarity between
the output (hard or soft decisions) of each base classi�er and the codeword for
each class by using a distance metric, such as the Hamming or the Euclidean
distance. The class with the minimum distance is then chosen as the estimated
class label. The method can handle incorrect base classi�cation results up to a
certain degree. Speci�cally, if the minimum Hamming distance (HD) between any
pair of codewords is d, then up to b(d− 1)/2c single bit errors can be corrected.

As for bias and variance analysis, after the initial work of Geman [8] on the
regression setting using squared-error loss, others like Breiman [20], Kohavi and
Wolpert [10], Dietterich and Kong [9], Friedman [11], Wolpert [23], Heskes [12],
Tibshirani [13], Domingos [7] and James [1] have tried to extend the analysis for
the classi�cation setting. One of the problems with the above de�nitions of bias
and variance is that most of them are given for speci�c loss functions such as the
zero-one loss, and it is hard to generalize them for all the other loss functions.
Usually, new de�nitions are driven for each loss function. Even if the de�nitions
are proposed to be general, they may fail to satisfy the additive decomposition
of the prediction error de�ned in [8]. The de�nition of James has advantages
over the others as it proposes to construct a scheme which is generalizable to
any symmetric loss function. Furthermore, it proposes two more concepts called
�systematic e�ect� and �variance e�ect� which help assure the additive prediction
error decomposition for general loss functions and realize the e�ects of bias and
variance on the prediction error.

Some characteristics of the other de�nitions which make James' more prefer-
able for us are as follows: 1) Dietterich allows a negative variance and it is possi-
ble for the Bayes classi�er to have positive bias. 2) Experimentally, the trends of
Breiman's bias and variance closely follow James' systematic e�ect and variance
e�ect ones respectively. However, for each test input pattern, Breiman separates
base classi�ers into two sets, as biased and unbiased; and considers each test
pattern only to have either bias or variance accordingly. 3) Kohavi and Wolpert
also assign a nonzero bias to the Bayes classi�er but the Bayes error is absorbed
within the bias term. Although it helps avoid the need to calculate the Bayes
error in real datasets through making unwarranted assumptions, it is not prefer-
able since the bias term becomes too high. 4) The de�nitions of Tibshirani,
Heskes and Breiman are di�cult to generalize and extend for the loss functions
other than the ones for which they were de�ned. 5) Friedman proposes that bias
and variance do not always need to be additive.

In addition to all these di�erences, it should also be noted that the character-
istics of bias and variance of Domingos' de�nition are actually close to James',
although the decomposition can be considered as being multiplicative [1].

In the literature, attempts have also been made to explore the bias-variance
characteristics of ECOC and bagging ensembles. Examples can be found in [1] [9]
[20][14][15]. In this paper, a detailed bias-variance analysis of ECOC and bagging
ensembles using NNs as base classi�ers is given while systematically changing
parameters, namely nodes and epochs, based on James' de�nition.



2 Bias and Variance Analysis of James

James [1] extends the prediction error decomposition, which is initially proposed
by Geman et al [8] for squared error under regression setting, for all symmetric
loss functions. Therefore, his de�nition also covers zero-one loss under classi�ca-
tion setting, which we use in the experiments.

In his decomposition, the terms �systematic e�ect� and �variance e�ect� sat-
isfy the additive decomposition for all symmetric loss functions, and for both
real valued and categorical predictors. They actually indicate the e�ect of bias
and variance on the prediction error. For example, a negative variance e�ect
would mean that variance actually helps reduce the prediction error. On the
other hand, the �bias� term is de�ned to show the average distance between the
response and the predictor; and the �variance� term refers to the variability of the
predictor. As a result, both the meanings and the additive characteristics of the
bias and variance concepts of the original setup have been preserved. Following
is a summary of the bias-variance derivations of James:

For any symmetric loss function L, where L(a, b) = L(b, a):

EY,Ỹ [L(Y, Ỹ )] = EY [L(Y, SY )] + EY [L(Y, SỸ )− L(Y, SY )]

+EY,Ỹ [L(Y, Ỹ )− L(Y, SỸ )]

prediction error = V ar(Y ) + SE(Ỹ , Y ) + V E(Ỹ , Y )

where L(a, b) is the loss when b is used in predicting a , Y is the response, Ỹ
is the predictor, SE is the systemmatic e�ect and V E is the variance e�ect.
SY = argminµEY [L(Y, µ)] and SỸ = argminµEY [L(Ỹ , µ)]. We see here that
prediction error is composed of the variance of the response (irreducible noise),
systematic e�ect and variance e�ect.

Using the same terminology, the bias and variance for the predictor are de-
�ned as follows:

Bias(Ỹ ) = L(SY, SỸ )

V ar(Ỹ ) = EỸ [L(Ỹ , SỸ )]

When the speci�c case of classi�cation problems with zero-one loss function
is considered, we end up with the following formulations:

L(a, b) = I(a 6= b), Y ε {1, 2, 3..N} for an N class problem, PYi = PY (Y = i),
P Ỹi = PỸ (Ỹ = i), ST = argminiEY [I(Y 6= i)] = argmaxiP

Y
i

Therefore,

V ar(Y ) = PY (Y 6= SY ) = 1−maxiPYi
V ar(Ỹ ) = PỸ (Ỹ 6= SỸ ) = 1−maxiP Ỹi
Bias(Ỹ ) = I(SỸ 6= SY )



V E(Ỹ , Y ) = P (Y 6= Ỹ )− PY (Y 6= SỸ ) = PY
SỸ
−

∑
i

PYi P
Ỹ
i

SE(Ỹ , Y ) = PY (Y 6= SỸ )− PY (Y 6= SY ) = PYSY − PYSỸ

where I(q) is 1 if q is a true argument and 0 otherwise.

3 Experiments

3.1 Experimental Setup

Experiments have been carried out on 5 arti�cial and 4 UCI MLR [21] datasets.
3 of the arti�cial datasets are created according to Breiman's description in [20].
Detailed information about the sets can be found in Table 1. The optimization
method used in NNs is the Levenberg-Marquart (LM) technique; the level of
training (epochs) varies between 2 and 15; and the number of nodes between 2
and 16.

The ECOC matrices are created by randomly assigning binary values to each
matrix cell and Hamming Distance is used as the metric in the decoding stage. In
the experiments, 3 classi�cation methods are analysed: Single classi�er, bagging,
and ECOC. In each case, 50 base classi�ers are created for bias-variance analysis.
Each base classi�er is either a single classi�er, or an ensemble consisting of 50
bagged classi�ers or ECOC matrices of 50 columns.

Experiments have been repeated 10 times for the arti�cial datasets by using
di�erent training & test data, as well as di�erent ECOC matrices in each run;
and the results are averaged1. The number of training patterns per base classi�er
is equal to 300; and the number of test patterns is 18000. For the UCI datasets
having separate test sets, the analysis has been done just once for the single
classi�er and bagging settings, and 10 times with di�erent matrices for the ECOC
setting. Here, bootstrapping is applied on the base classi�ers, as it is expected to
be a close enough approximation to random & independent data generation from
a known underlying distribution [20]. As for the UCI datasets without separate
test sets, the ssCV cross-validation method of Webb and Conilione [16], which
allows the usage of the whole dataset both in training and test stages, has been
implemented. In ssCV, the shortcomings of the hold-out approach like the usage
of small training and test sets; and the lack of inter-training variability control
between the successive training sets has been overcome. In our experiments, we
set the inter-training variability constant δ to 1/2.

The Bayes error, namely V ar(Y ) for the zero-one loss function, is analytically
calculated for the arti�cial datasets, as the underlying likelihood probability dis-
tributions are known. As for the real datasets; either the need for the underlying
probability distributions has been overcome by assuming zero noise level [7], or
some heuristic methods like using nearest neighbours [1] have been proposed to

1 On the two class problems, ECOC has not been used, as it would be nothing di�erent
than applying bagging. The e�ect of bootstrapping of bagging would be satis�ed by
the random initial weights of LM.



Table 1. Summary of the datasets used

Type # Training # Test # Attributes # Classes Bayes
Samples Samples Error (%)

TwoNorm [20] Arti�cial 300* 18000* 20 2 2.28

ThreeNorm [20] Arti�cial 300* 18000* 20 2 10.83

RingNorm [20] Arti�cial 300* 18000* 20 2 1.51

Arti�calMulti1 Arti�cial 300* 18000* 2 5 21.76

Arti�calMulti2 Arti�cial 300* 18000* 3 9 14.33

Glass Identi�cation UCI 214 - 10 6 38.66

Dermatology UCI 358 - 33 6 9.68

Segmentation UCI 210 2100 19 7 4.21

Yeast UCI 1484 - 8 10 43.39

*: The training and test samples for the arti�cial datasets change per each base classi�er
and per each run respectively.

estimate the underlying probability distributions and therefore the Bayes error
in the literature. The �rst approach has the shortcoming of a wrong estimate
on bias. Therefore, we also use a heuristic method in our experiments to do the
estimation. Our motivation is to �nd the optimal classi�er parameters giving the
lowest error rate possible, through cross-fold validation (CV); and then to use
these parameters to construct a classi�er which is expected to be close enough to
the Bayes classi�er. This classi�er is then used to calculate the output probabili-
ties per pattern in the dataset. For this, we �rst �nd an optimal set of parameters
for RBF SVMs by applying 10 fold CV; and then, obtain the underlying proba-
bilities by utilizing the leave-one-out approach. Using the leave-one-out approach
instead of training and testing the whole dataset with the found CV parameters
helps us avoid over�tting. It is assumed that the underlying distribution stays
almost constant for each fold of the leave-one-out procedure.

3.2 Results

In this section, some clear trends found in the analysis are discussed. Although
the observations are made using 9 datasets, for brevity reasons we only present
a number of representative graphs.

Prediction errors obtained by bagging and ECOC ensembles are always lower
than those of the single classi�er; and the reduction in the error is almost always
a result of reductions both in variance e�ect (VE) and in systematic e�ect (SE).
This observation means that the contributions of bias and (predictor) variance
to the prediction error are smaller when ensembles are used (Fig 1, Fig 2). Note
that, reductions in VE have greater magnitude, and in two-class problems, the
reduction in SE is almost zero (Fig 3). As for bias and variance themselves, it has
been observed that ECOC and bagging induce reduction in both, but especially
in variance, in almost all the cases. The fact that NNs are high variance - low bias
classi�ers also plays a role in these observations, where the high variance is more
easily reduced compared to the already lower bias; and VE is reduced in greater



amounts compared to SE. In [20] and [9], bagging and ECOC are also stated
to have low variance in the additive error decomposition, and Kong-Dietterich
framework [9] also acknowledges that ECOC reduces variance.

The convergence of single classi�ers to the optimal prediction error are usu-
ally achieved at higher number of epochs than those of bagging; and ECOC
ensemble convergence is mostly at even lower epochs than bagging. The pre-
diction errors are also in the same descending order: single classi�er, bagging
and ECOC. The only exceptions to these happen when high number of nodes
and epochs are used. Under these circumstances, the VE, SE, and therefore the
prediction errors of both ECOC and bagging are similar. However, it should also
be noted that ECOC outperforms bagging in sense of speed due to the fact that
it divides multi-class classi�cation problems into binary classi�cation ones.

It is also almost always the case that the prediction error of ECOC converges
to its optimum in 2 nodes, whereas a single classi�er requires a higher number
of nodes. Moreover, for ECOC, the number of epochs at the optimum is also
lower than or equal to that of the single classi�er. In other words, compared
to a single classi�er trained with high number of epochs and nodes, an ECOC
can yield better results with fewer nodes and epochs. The trend is similar when
bagging is considered. It usually stands between the single classi�er and ECOC,
in sense of accuracy and convergence points.

When the single classi�er case is taken into account; we see that VE does not
necessarily follow the trend of variance. It happens especially when the number of
nodes and epochs is small, that is when the network is relatively weak (Fig 2). In
this scenario, the variance decreases while the VE increases. This is actually an
expected observation as one would expect having high variance to help hitting the
right target class, when the network is relatively less decisive. Ensemble methods
do not show this property as much as the single classi�er. A possible explanation
might be that each base ensemble classi�er already makes use of variance coming
from the base classi�ers it is composed of; and this compensates for the decrease
in VE of single classi�ers with high variance, in weak networks.

Therefore, more variance among base ensemble classi�ers does not necessarily
help having less VE. However, an example of bagging creating negative VE,
which clearly states that having variance reduces prediction error; and then going
back to positive when variance increases, can be observed on Arti�cialMulti2
data when it is processed with 4 node NNs. A similar observation is that although
the variance has high values in networks with small number of nodes and epochs,
the magnitude of its e�ect is relatively smaller (Fig 1, Fig 2).

In the above mentioned scenario of VE showing an opposite trend of variance,
the bias-variance trade-o� can be observed. At the points where the VE increases,
SE decreases to reveal an overall decrease in the prediction error. However, these
points are not necessarily the optimal points in terms of the prediction error; the
optima are mostly where there is both VE and SE reduction (Fig 2). Apart from
this case, bias and variance are mostly correlated with SE and VE respectively.
This is also pointed out in [1] (Fig 2, Fig 3).



Fig. 1. Bias Variance Analysis for Arti�calMulti2 data. First Row: Overall prediction error. Second

Row: Variance. Third Row: Variance e�ect. First Column: For 2 Nodes. Second Column: For 4 Nodes.

Third Column: For 16 Nodes. Black lines indicate the results for single classi�er, red for ECOC and

green for bagging

4 Discussion

By analysing bagging, ECOC and single classi�ers consisting of NNs through
the bias-variance de�nition of James, we have found some clear trends and rela-
tionships that o�er hints to be used in classi�er design. For multi-class classi�ca-
tion problems, the increase in the overall prediction performance obtained with
ECOC makes it preferable over the single classi�ers. The fact that it converges
to the optimum by using smaller number of nodes and epochs is yet another
advantage. It also outperforms bagging mostly, while in other cases gives similar
results. As for the two-class problems, bagging always outperforms the single
classi�er; and the optimum number of nodes and epochs is relatively smaller.

The increase in the performance of bagging and ECOC is a result of the
decrease in both variance e�ect and systematic e�ect, although the reductions
in the magnitude of the variance e�ect are bigger. Also, when the NNs are
weak, that is when they have been trained with few nodes and epochs, we see
that the trends of variance and variance e�ect might be in opposite directions
in the single classi�er case. This implies that having high variance might help



Fig. 2. Bias Variance Analysis for Dermatology data. First Row: Overall prediction error. Second

Row: Variance. Third Row: Variance e�ect. Fourth Row: Systematic e�ect. First Column: For 2

Nodes. Second Column: For 4 Nodes. Third Column: For 16 Nodes. Black lines indicate the results

for single classi�er, red for ECOC and green for bagging



Fig. 3. Bias Variance Analysis for ThreeNorm data. First Row: Overall prediction error. Second

Row: Variance e�ect. Third Row: Systematic e�ect and Bias. First Column: For 2 Nodes. Second

Column: For 4 Nodes. Third Column: For 16 Nodes. Black & blue lines indicate the results for single

classi�er (bias and systematic e�ect) and green & magenta for bagging

improve the classi�cation performance in weak networks when single classi�ers
are used. However, they are still outperformed by ensembles, which have even
lower variance e�ects.

As for further possible advantages of ensembles, the fact that they are ex-
pected to avoid over�tting might be shown by using more powerful NNs with
higher number of nodes, or other classi�ers such as SVMs that are more prone
to over�tting. Future work is also aimed at understanding and analysing the
bias-variance domain within some mathematical frameworks such as [17] [18]
and using the information in the design of ECOC matrices.
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Abstract. The classification of large number of object categories is a
challenging trend in the Machine Learning field. In literature, this is
often addressed using an ensemble of classifiers. In this scope, the Error-
Correcting Output Codes framework has demonstrated to be a powerful
tool for the combination of classifiers. However, most of the state-of-the-
art ECOC approaches use a linear or exponential number of classifiers,
making the discrimination of a large number of classes unfeasible. In this
paper, we explore and propose a minimal design of ECOC in terms of
the number of classifiers. Evolutionary computation is used for tuning
the parameters of the classifiers and looking for the best Minimal ECOC
code configuration. The results over several public UCI data sets and a
challenging multi-class Computer Vision problem show that the proposed
methodology obtains comparable and even better results than state-of-
the-art ECOC methodologies with far less number of dichotomizers.

Keywords: Ensemble of Dichotomizers, Error-Correcting Output Codes,
Evolutionary optimization

1 Introduction

Nowadays challenging applications of Machine Learning deal with changing en-
vironments, online adaptations, contextual information, etc. In order to deal
with all these problems, efficient ways for processing huge amount of data are
often required. Usual machine learning strategies are effective for dealing with
small number of classes. The choices are limited when the number of classes
becomes large. In that case, the natural algorithms to consider are those that
model classes in an implicit way, such as instance based learning (i.e. nearest
neighbors). However, this choice is not necessarily the most adequate for a given
problem. Moreover, we are forgetting many algorithms of the literature such as
ensemble learning (i.e. Adaboost) or kernel based discriminant classifiers (i.e.
support vector machines) that have been proven to be very powerful tools.

Most of state-of-the-art multi-class architectures need to deal with the dis-
crimination of each class either by modeling its probability density function, or
by storing a classification boundary and using some kind of aggregation/selection



function to obtain a final decision. Another way to deal with this kind of prob-
lems is to use a divide-and-conquer approach, such as flat strategies (voting),
hierarchical classifiers, or Error-Correcting Output Codes (ECOC). ECOC en-
codes different partitions of the problem in a matrix of codewords (one codeword
per class) and the final decision is obtained by looking at the most similar code-
word at the test step. ECOC allows the inclusion of flat strategies as well as
hierarchical classifiers [1]. Moreover, the analysis of the ECOC error evolution
has demonstrated that ECOC corrects errors caused by the bias and the variance
of the learning algorithm [2]. However, note that by construction or in order to
obtain the desired performance, most of the strategies need between N and N2

classifiers, given N different classes. Although this is adequate and acceptable
when the number of classes is small, it becomes prohibitive when the number
of classes becomes large. This number of classifiers has been recently reduced in
some ECOC designs, such as the DECOC approach of [1], that requires N − 1
classifiers. The Dense Random and Sparse Random designs also reduce this num-
ber of classifiers to 15 · log2(N) and 10 · log2(N), respectively. However this kind
of approaches design the problems without taking into account the underlying
distribution of the class characteristics.

The goal of this paper is to propose and evaluate different general ways of
making the multi-class machine learning problem tractable when the number of
categories makes most of the models computationally unfeasible. In particular,
we are interested in methods that scale sub-linearly with the number of classes,
allowing their applicability in general Machine Learning problems. The proposal
relies on the Error Correcting Output Codes framework, reducing the number of
binary classifiers that have to be trained in the ensemble. Following the Occam
razor principle, we propose a minimal ECOC design of size log2(N) in terms
of the number of classifiers. An evolutionary approximation, similar to the one
proposed in [3] is proposed for tuning the parameters of the classifiers and looking
for a Minimal design with high generalization capabilty. Moreover, this design is
problem dependent in the sense that the evolved ECOC fits the distribution of
the object characteristics. The novel Minimal ECOC is compared with the state-
of-the-art ECOC approaches, obtaining comparable and even better results when
classifying several object categories in different Machine Learning applications
with far less cost.

The paper is organized as follows: Section 2 presents the Minimal ECOC
design. Section 3 evaluates the novel methodology comparing with the state-of-
the-art approaches on public and challenging Pattern Recognition Applications.
Finally, Section 4 concludes the paper.

2 Minimal Error-Correcting Output Codes

In this section, we review the ECOC framework and propose a Minimal ECOC
design in terms of the number of classifiers.

2.1 Error-Correcting Output Codes

Given a set of N classes to be learnt in an ECOC framework, n different bi-
partitions (groups of classes) are formed, and n binary problems (dichotomizers)



over the partitions are trained. As a result, a codeword of length n is obtained
for each class, where each position (bit) of the code corresponds to a response
of a given dichotomizer (coded by +1 or -1 according to their class set member-
ship). Arranging the codewords as rows of a matrix, we define a coding matrix
M , where M ∈ {−1,+1}N×n in the binary case. In Figure 1 we show an exam-
ple of a binary coding matrix M . The matrix is coded using five dichotomizers
{h1, ..., h5} for a 4-class problem {c1, ..., c4} of respective codewords {y1, ..., y4}.
The hypotheses are trained by considering the labeled training data samples
{(ρ1, l(ρ1)), ..., (ρm, l(ρm))} for a set of m data samples. The white and black re-
gions of the coding matrix M are coded by +1 and -1, respectively. For example,
the first classifier is trained to discriminate c3 against c1, c2, and c4; the second
one classifies c2 and c3 against c1 and c4, etc., as follows:

h1(x) =

{
1 if x ∈ {c3}
−1 if x ∈ {c1, c2, c4}

, . . . , h5(x) =

{
1 if x ∈ {c2, c4}
−1 if x ∈ {c1, c3}

(1)

Fig. 1. Binary ECOC design for a 4-class problem. An input test codeword x is clas-
sified by class c2 using the Hamming or the Euclidean Decoding.

The standard binary coding designs are the one-versus-all [4] strategy with
N dichotomizers and the dense random strategy [5], with 10 log2 N classifiers.
In the case of the ternary symbol-based ECOC, the coding matrix becomes
M ∈ {−1, 0,+1}N×n. In this case, the symbol zero means that a particular class
is not considered for a given classifier. In this ternary framework, the standard
designs are the one-versus-one strategy [6] and the sparse random strategy [5],

with N(N−1)
2 and 15 log2 N binary problems, respectively.

During the decoding process, applying n binary classifiers, a code x is ob-
tained for each data sample ρ in the test set. This code is compared to the base
codewords (yi, i ∈ [1, .., N ]) of each class defined in the matrix M , and the data
sample is assigned to the class with the closest codeword. In Figure 1, the new
code x is compared to the class codewords {y1, ..., y4} using Hamming [4] and
Euclidean Decoding [5]. The test sample is classified by class c2 in both cases,
correcting one bit error.

In literature there roughly exists three different lines for decoding [7]: those
based on similarity measurements, including the Hamming and Euclidean de-
coding, probabilistic approaches, and loss-functions strategies.



2.2 Minimal ECOC Coding

Although the use of large codewords was initially suggested in order to correct
as many errors as possible at the decoding step, high effort has been put into
improving the robustness of each individual dichotomizer so that compact code-
words can be defined in order to save time. In this way, the one-versus-all ECOC
coding has been widely applied for several years in the binary ECOC framework.
Although the use of a reduced number of binary problems often implies deal-
ing with more data per classifier (i.e. compared to the one-versus-one coding),
this approach has been defended by some authors in the literature demonstrat-
ing that the one-versus-all technique can reach comparable results to the rest
of combining strategies if the base classifier is properly tuned [8]. Recently, this
codeword length has been reduced to N−1 in the DECOC approach of [1], where
the authors codify N − 1 nodes of a binary tree structure as dichotomizers of
a ternary problem-dependent ECOC design. In the same line, several problem-
dependent designs have been recently proposed [9, 1, 10]. The new techniques are
based on exploiting the problem domain by selecting the representative binary
problems that increase the generalization performance while keeping the code
length ”relatively” small.

Although one-versus-all, DECOC, dense, and sparse random approaches have
a relatively small codeword length, we can take advantage of the information
theory principles to obtain a more compact definition of the codewords. Having a
N -class problem, the minimum number of bits necessary to codify and univocally
distinguish N codes is B = ⌈log2 N , where ⌈.⌉ rounds to the upper integer.

For instance, we can think in a codification where the class codewords corre-
spond to the N first Gray or binary code sequences of B bits, defining the Gray
or binary Minimal ECOC designs. Note that this design represents the minimal
ECOC codification in terms of the codeword length. An example of a binary
Minimal ECOC, Gray Minimal ECOC, and one-versus-all ECOC designs for a
8-class problem are shown in Figure 2. The white and black positions correspond
to the symbols +1 and -1, respectively.

(a) (b) (c)

Fig. 2. (a) Binary Minimal, (b) Gray Minimal, and (c) one-versus-all ECOC coding
designs of a 8-class problem.

Besides exploring predefined binary or Gray minimal coding matrices, we
also propose the design of different minimal codification based on the distribu-
tion of the data and the characteristics of the applied base classifier, which can



increase the discrimination capability of the system. However, finding a suitable
minimal ECOC matrix for an N−class problem requires to explore all the pos-
sible N ×B binary matrices, where B is the minimum codeword length in order
to define a valid ECOC matrix. For this reason, we also propose an evolutionary
parametrization of the Minimal ECOC design.

Evolutionary Minimal Parametrization When defining a minimal design
of an ECOC, the possible lost of generalization performance has to be taken into
account. In order to deal with this problem an evolutionary optimization process
is used to find a minimal ECOC with high generalization capability.

In order to show the parametrization complexity of the Minimal ECOC de-
sign, we first provide an estimation of the number of different possible ECOC
matrices that we can build, and therefore, the search space cardinality. We ap-
proximate this number using some simple combinatorial principles. First of all,
if we have an N−class problem and B possible bits to represent all the classes,
we have a set CW with 2B different words. In order to build an ECOC matrix,
we select N codewords from CW without reposition. That is, taking N from a
variation of 2B elements and considering the symmetry of binary partitions, we

can construct V 2B

N = 2B !
2N(2B−N)!

different ECOC matrices.

In this type of scenarios evolutionary approaches are often introduced with
good results. Evolutionary algorithms are a wide family of methods that are
inspired on the Darwin’s evolution theory, and used to be formulated as op-
timization processes where the solution space is not differentiable or is not
well defined. In these cases, the simulation of natural evolution process using
computers results in stochastic optimization techniques which often outperform
classical methods of optimization when applied to difficult real-world problems.
Although the most used and studied evolutionary algorithms are the Genetic
Algorithms (GA), from the publication of the Population Based Incremental
Learning (PBIL) in 1995 by Baluja and Caruana [11], a new family of evolu-
tionary methods is striving to find a place in this field. In contrast to GA, those
new algorithms consider each value in the chromosome as a random variable,
and their goal is to learn a probability model to describe the characteristics of
good individuals. In the case of PBIL, if a binary chromosome is used, a uniform
distribution is learnt in order to estimate the probability of each variable to be
one or zero.

In this paper we experiment with both evolutionary strategies, GA and PBIL.

Problem encoding: The first step in order to use an evolutionary algorithm
is to define the problem encoding, which consists of the representation of a cer-
tain solution or point in the search space by means of a genotype or alternatively
a chromosome [12]. Binary encoding is the most common, mainly because first
works about GA used this type of encoding. In binary encoding, every chromo-
some is a string of bits 0 or 1. Each ECOC is encoded as a binary chromosome
ζ =< hc1

1 , . . . , hc1
B , hcN

1 , . . . , hcN
B >, where h

cj
i ∈ {0, 1} is the expected value of

the i − th classifier for the class cj , which corresponds to the i − th bit of the
class cj codeword.



Adaptation function: Once the encoding is defined, we need to define the
adaptation function, which associates to each individual its adaptation value to
the environment, and thus, their survivor probability. In the case of the ECOC
framework, the adaptation value must be related to the classification error.

Given a chromosome ζ =< ζ0, ζ1, . . . , ζL > with ζi ∈ {0, 1}, the first step
is to recover the ECOC matrix M codified in this chromosome. The values of
M allows to create binary classification problems from the original multi-class
problem, following the partitions defined by the ECOC columns. Each binary
problem is addressed by means of a binary classifier, which is trained in order
to separate both partitions of classes. Assuming that there exists a function
y = f(x) that maps each sample x to its real label y, to train a classifier means
to find the best parameters w∗ of a certain function y = f ′(x,w), in the
manner that for any other w ̸= w∗, f ′(x,w∗) is a better approximation to f
than f ′(x,w). Once w∗ are estimated for each binary problem, the adaptation
value corresponds to the classification error. In order to take into account the
generalization power of the trained classifiers, the estimation of w∗ is performed
on a subset of samples, while the rest of the samples are reserved for validation.
The adaptation value for an individual represented by a certain chromosome ζi
can be formulated as:

εi(X,Y,Mi) =
∑
j

δj(xj ,Mi ̸= yj) (2)

where Mi is the ECOC matrix encoded in ζ, X = ⟨x1, . . . , xN ⟩ a set of samples,
Y = ⟨y1, . . . , yN ⟩ the expected labels for samples in X, and δi is the function
that returns the classification label applying the decoding strategy.

Evolutionary process: Once the encoding and adaptation function have
been defined, we use standard implementation for GA and PBIL, in order to
evolve the Minimal ECOC matrices. In the case of GA, scattered crossover op-
erator is used, in which, we generate a random binary vector, with a binary value
assigned to each gene. The first child is created using all the genes from the first
parent in those positions with a value of one, and the genes of the second parent
with positions with the value zero. The second child is created as the comple-
mentary of the first one. That is, taking genes from second parent for values
one and from first parent for values zero. In order to introduce variations to
the individuals, we use mutation operator that adds a unit Gaussian distributed
random value to the chosen gene. The new gene value is clipped if it falls outside
of the user-specified lower or upper bounds for that gene. For PBIL, the best
two individuals of each population are used to update the probability distribu-
tion. At each generation, this probability distribution is used to sample a new
population of individuals. A uniform random noise is applied to the probability
model to avoid convergence to local minima.

Finally, in both evolutionary strategies we adopt an Island Model evolution
scheme in order to exploit a more coarse grain parallel model. The main idea is to
split a population of K individuals into S sub-populations of K/S individuals. If
each sub-population is evolved independently from the others, genetic drift will



tend to drive these populations in different directions. By introducing migration,
the Island Model is able to exploit differences in the various sub-populations (this
variation in fact represents a source of genetic diversity). Each sub-population
is an island and there is a chance movement of genetic material from one island
to another.

Training the binary classifiers: In [8], Rifkin concludes that the number of
classifiers in the ECOC problem can be reduced using more accurate classifiers.
Therefore, in this paper we adopt the Support Vector Machines with Gaussian
Radial Basis Functions kernel (SVM-RBF). Training a SVM often implies the
selection of a subset of data points (the support vectors), which are used in
order to build the classification boundaries. In the specific case of Gaussian RBF
kernels, we need to optimize the kernel parameter γ and the regularizer C, which
have a close relation to the data distribution. While the support vectors selection
is part of the SVM learning algorithm, and therefore, is clearly defined, finding
the best C and γ is addressed in literature with various heuristic or brute-force
approaches. The most common approach is the use of cross-validation processes
which select the best pair of parameters for a discretization of the parameters
space. Nevertheless, this can be viewed as another optimization problem. An
therefore, it can be faced using evolutionary algorithms. For each binary problem,
defined by one column of the ECOC matrix, we use Genetic Algorithms in order
to find good values for C and γ parameters, using the same settings than in [3],
where individuals correspond to a pairs of genes, and each gene corresponds to
the binary codification of a floating point value.

3 Results

In order to present the results, first, we discuss the data, methods, and evaluation
measurements of the experiments.

• Data: The first data used for the experiments consists of twelve multi-class
data sets from the UCI Machine Learning Repository database [13]. Then, we
apply the classification methodology in the public Labeled Faces in the Wild [14]
data set to perform the multi-class face classification of a large problem consisting
of 610 face categories.

• Methods: We compare the one-versus-one [6] and one-versus-all [4] ECOC
approaches with the binary and evolutionary Minimal approaches. For simplicity
we omitted the Gray Minimal design. The Hamming decoding is applied at the
decoding step [15]. The ECOC base classifier is the OSU implementation of
SVM with Radial Basis Function kernel [16]. The SVM C and γ parameters are
tuned via Genetic Algorithms and PBIL for all the methods, minimizing the
classification error of a two-fold evaluation over the training sub-set.

• Evaluation measurements: The classification performance is obtained by
means of a stratified ten-fold cross-validation, and testing for the confidence
interval with a two-tailed t-test. We also apply the Friedman test [17] in order
to look for statistical significance among the obtained performances.



3.1 UCI categorization

The classification results obtained for all the UCI data sets considering the dif-
ferent ECOC configurations are shown in Table 1. In order to compare the
performances provided for each strategy, the table also shows the mean rank of
each ECOC design considering the twelve different experiments. The rankings
are obtained estimating each particular ranking rji for each problem i and each
ECOC configuration j, and computing the mean ranking R for each design as
Rj =

1
N

∑
i r

j
i , where N is the total number of data sets. We also show the mean

number of classifiers (#) required for each strategy.

Table 1. UCI classification results.

Binary Minimal ECOC Evol. Minimal ECOC one-vs-all ECOC one-vs-one ECOC

Data set Perf. Classif. Perf. Classif. Perf. Classif. Perf. Classif.

Derma 96.0±2.9 3 96.3±2.1 3 95.1±3.3 6 94.7±4.3 15

Iris 96.4±6.3 2 98.2±1.9 2 96.9±6.0 3 96.3±3.1 3

Ecoli 80.5±10.9 3 81.4±10.8 3 79.5±12.2 8 79.2±13.8 28

Vehicle 72.5±14.3 2 76.99±12.4 2 74.2±13.4 4 83.6±10.5 6

Wine 95.5±4.3 2 97.2±2.3 2 95.5±4.3 3 97.2±2.4 3

Segment 96.6±2.3 3 96.6±1.5 3 96.1±1.8 7 97.18±1.3 21

Glass 56.7±23.5 3 50.0±29.7 3 53.85±25.8 6 60.5±26.9 15

Thyroid 96.4±5.3 2 93.8±5.1 2 95.6±7.4 3 96.1±5.4 3

Vowel 57.7±29.4 3 81.78±11.1 3 80.7±11.9 8 78.9±14.2 28

Balance 80.9±11.2 2 87.1±9.2 2 89.9±8.4 3 92.8±6.4 3

Shuttle 80.9±29.1 3 83.4±15.9 3 90.6±11.3 7 86.3±18.1 21

Yeast 50.2±18.2 4 54.7±11.8 4 51.1±18.0 10 52.4±20.8 45

Rank & # 2.9 2.7 2.0 2.7 2.7 5.7 2.2 15.9

In order to analyze if the difference between method ranks is statistically
significant, we apply a statistical test. In order to look if the measured ranks
differ from the mean rank we use the Friedman test. The Friedman statistic
value is computed as X2

F = 12N
k(k+1)

[∑
j R

2
j −

k(k+1)2

4

]
. In our case, with k = 4

ECOC designs to compare, X2
F = −4.94. Since this value is undesirable conser-

vative, Iman and Davenport proposed a corrected statistic: FF =
(N−1)X2

F

N(k−1)−X2
F
.

Applying this correction we obtain FF = −1.32. With four methods and twelve
experiments, FF is distributed according to the F distribution with 3 and 33
degrees of freedom. The critical value of F (3, 33) for 0.05 is 2.89. As the value
of FF is no higher than 2.98 we can state that there are no statistical different
among the ECOC performances. This means that all four strategies are suitable
in order to deal with multi-class categorization problems. This result is very
satisfactory and encourages the use of the Minimal approach since similar (or
even better) results can be obtained with far less number of classifiers. Moreover,
the GA evolutionary version of the Minimal design improves in the mean rank
to the rest of classical coding strategies, and in most cases outperforms the bi-
nary Minimal approach in the present experiment. This result is expected since
the evolutionary version looks for a minimal ECOC matrix configuration that
minimizes the error over the training data. In particular, the advantage of the
evolutionary version over the binary one is more significant when the number of
classes increases, since more minimal matrices are explored, and hence, on an
average, it is capable of finding a better solution.

On the other hand, possible reasons why the evolutionary Minimal ECOC
design obtains similar or even better performance results than the one-versus-
one and one-versus-all approaches with far less number of dichotomizers can be



the few classifiers considered for tuning, and the use of all the classes in balanced
binary problems, which can help the system to increase generalization if a good
decision boundary can be found by the classifier. Note that the one-versus-one
classifier looks for binary problems that split just two classes. In those cases,
though good and fast solutions could be found in training time, the use of less
data does not assure a high generalization capability of the individual classifiers.

In terms of testing time, since all the trained classifiers spend the same time
for testing, classification time is proportional to the number of trained classifiers.
The mean number of dichotomizers used for each strategy is shown in the last
row of Table 1. Observe the great difference in terms of the number of classifiers
between the minimal approaches and the classical ones. The Minimal approaches
obtain an average speed up improvement of 111% respect the one-versus-all
approach in testing time. Meanwhile in the case of the one-versus-one technique
this improvement is of 489%.

In the next section we test if the same behavior occurs classifying a challeng-
ing Computer Vision problem with several object categories.

3.2 Labeled Faces in the Wild categorization

This data set contains 13000 faces images taken directly from the web from over
1400 people. This images are not constrained in terms of pose, light, occlusions
or any other relevant factor. For the purpose of this experiment we used a specific
subset, taking only the categories which at least have four or more examples,
having a total of 610 face categories. Finally, in order to extract relevant fea-
tures from the images, we apply an Incremental Principal Component Analysis
procedure [18], keeping 99.8% of the information. An example of face images is
shown in 3.

Fig. 3. Labeled Faces in the Wild data set.

The results in Table 2 show that the best performance is obtained by the Evo-
lutionary GA and PBIL Minimal strategies. One important observation is that
Evolutionary strategies outperform the classical one-versus-all approach, with
far less number of classifiers (10 instead of 610). Note that in this case we omit-
ted the one-vs-one strategy since it requires 185745 classifiers for discriminating
610 face categories.

Table 2. Labeled Faces in the Wild data set classification results.

Binary M. ECOC GA M. ECOC PBIL M. ECOC one-vs-all one-vs-one

Data set Perf. # Perf. # Perf. # Perf. # Perf. #

FacesWild 26.4±2.1 10 30.7±2.3 10 30.02.4± 10 25.0±3.1 610 - 185745



4 Conclusion
We presented a general methodology for the classification of several object cate-
gories which only requires ⌈log2 N⌉ classifiers for aN -class problem. The method-
ology is defined in the Error-Correcting Output Codes framework, designing a
minimal coding matrix in terms of dichotomizers which univocally distinguish
N codes. Moreover, in order to speed up the design of the coding matrix and
the tuning of the classifiers, evolutionary computation is also applied.

The results over several public UCI data sets and a challenging multi-class
Computer Vision problem with several object categories show that the proposed
methodology obtains statistically equivalent results as the state-of-the-art ECOC
methodologies with far less number of dichotomizers. For example, the Minimal
approach trained 10 classifiers to split 610 face categories, meanwhile the one-
versus-all and one-versus-one approaches required 610 and 185745 dichotomizers,
respectively.
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Abstract. Bayesian Networks (BNs) are probabilistic graphical mod-
els that are popular in numerous fields. Here we propose these models
to improve the classification of glaucoma, a major cause of blindness
worldwide. We use visual field and retinal data to predict the early on-
set of glaucoma. In particular, the ability of BNs to deal with missing
data and encode prior expert knowledge allows us to compare a visual
field semi-supervised network and an expertise-driven network. Two BN-
based combinations of these networks are also proposed and compared to
the others. The best performances are obtained with the semi-supervised
data-driven network, however combining it with the expertise-driven net-
work improves performance in many cases and leads to interesting in-
sights about the datasets, networks and metrics.

Keywords: Bayesian networks, glaucoma, AGIS, visual field, classifica-
tion, ensembles of classifiers, combining classifiers

1 Introduction

Glaucoma is the second cause of blindness worldwide [17], but its underlying
mechanisms are still not clear. However, early treatment has been shown to
slow the progression of the disease, thus early diagnosis is desirable [22]. To this
purpose, several medical instruments available nowadays provide a large amount
of anatomical and functional data, which is exploited using statistical and A.I.
techniques. Our study aims to set up and combine Bayesian Network (BNs)
classifiers in order to obtain more precise early diagnosis of glaucoma and to
learn insights from the models. BNs are models which seem to be appropriate for
this issue, being able to integrate different datasets and model expert knowledge
in the field [16]. Moreover, their ability in handling missing data is very useful
in the context of glaucoma because no gold standard disease detection method
is available. BNs are white-box models, so that it is possible to look at the



underlying relations of the model to improve knowledge in the field. BNs have
already been successfully tested with glaucoma data in [19]. In the first stage of
this study, two different BN models are obtained using the Advanced Glaucoma
Intervention Study (AGIS) scoring system [7] as the class variable, and imposing
an expertise-driven network based on the anatomy of the optic nerve. The AGIS
defect scoring system depends on the number and depth of clusters of adjacent
depressed test sites in the total deviation printout of the threshold program
visual field (VF) test STATPAC-2 analysis. The VF test aims to measure the
functional ability of an eye by exposing different stimulus to different locations
of the patient field and it’s a routine test when screening for glaucoma. The
anatomy-based network is obtained by modelling the relations between sectors
of the optic nerve head (ONH) and the VF sectors as proposed by [10]. This is a
widely used structure-function map which has been proved to be correlated with
previous studies. The second stage of this study aims to combine the results of
the two BN classifiers in order not only to maximize the results, but also to learn
new insights about how the two different approaches interact. Two techniques
are explored: a BN combiner with 3 nodes and a more classical weighted vote
technique with accuracy-based weights. A BN combiner weighted on accuracy
is also proposed in this section. In the last part of the study the results of
the different models are presented and discussed in terms of performance and
qualitative outcome to better understand glaucoma and the associated clinical
metrics.

2 Methods

2.1 Datasets

In this study two independent datasets were used (Table 1). Dataset A is a
cross-sectional dataset of 78 early glaucomatous patients and 102 healthy con-
trol subjects. Inclusion criteria for early glaucomatous patients were Intraocular
Pressure (IOP) greater than 21 mmHg and early VF defects on at least 3 occa-
sions. Control subjects had IOP < 21 mmHg and known to be healthy. Dataset
B is a longitudinal dataset of 19 controls and 43 patients from Ocular Hyper-
tensive Treatment group, who developed glaucoma in the time span observed.
Initial eligibility criteria were in this case IOP > 21 mmHg and negative VF
test, and conversion was defined as positive AGIS score on 3 consecutive tests.
Control subjects had negative VF test in 2 tests and IOP < 21 mmHg. Data
consists of VF point sensibility obtained with Humphrey Field Analyzer II and
retinal sector-based parameters data from Heidelberg Retina Tomograph. Reti-
nal data was pre-processed for both datasets by applying the 95% prediction
interval MRA regression equation as indicated in [9], which is a linear combina-
tion of Age, Optic Disc Area (ODA) and Retinal Rim Area (RRA) into one single
parameter. Sensibility values were grouped in six sectors as suggested in [10] for
computational and simplicity reasons in correspondence with retinal parameters.



Table 1. Characteristics of the datasets used in the study

Dataset A Dataset B

Control Subjects (values) 102 (102) 19 (155)
Converters (values) 78 (78) 43 (474)
Total Subjects (values) 180 (180) 62 (629)
Mean Age (controls) 67.6 (57.5) 65.7 (66.7)

2.2 Bayesian Networks

BNs are probabilistic directed graphical models in which each node represents
a variable, and lack of arcs between nodes represents conditional independence
assumption. Each variable is associated with a conditional probability distribu-
tion (CPD), so that given the set of all CPDs in the network it is possible to
inference about any value of any node. For classification, BNs are used by se-
lecting the most probable value of the class node (i.e. glaucomatous vs healthy)
given the values observed for all the other nodes. To build a BN, the CPDs
of all the variables need to be estimated from data. This is typically obtained
using the Maximum Likelihood Estimation (MLE), which consists in maximiz-
ing the likelihood of the data given the parameters. In case of missing data,
however, this technique cant be used. Therefore, the Expectation-Maximization
algorithm (EM) was used for estimating the parameters in the unsupervised
network. This technique iteratively estimates the hidden values for the unob-
served data in the first step and maximizes the estimated likelihood function
at the next step. When the algorithm converges to a local maximum, the pa-
rameters are estimated [3]. The structure of the network (i.e. the links between
nodes) must be chosen as well: it can be either learned from the data or imposed
using expert knowledge. The learning algorithm used in this study was a Simu-
lated Annealing (SA) technique, which is a quasi-greedy algorithm that searches
through the space of possible structures to obtain the optimal structure [14]. To
explore different structures 2100 operations were carried by the algorithm, so
that in each iteration a link was added, removed or two nodes were swapped.
The algorithm was repeated 100 times using bootstrapping on the dataset [5].
This resampling technique has been widely used in order to reduce noise and
obtain more precise results. The score used to select the best structure after
each operation was the Bayesian Information Criterion (BIC) score, which is a
metric based on the likelihood of the observed data given the structure and the
parameters, with a penalizing factor related to the number of parameters that
aims to prevent overfitting. Bayesian Model Averaging was used on the learned
structures in order to calculate the posterior probability for each arc as proposed
in [6], i.e. by weighting each arc on the network score and a factor related to
the complexity of the network. The arcs with highest posterior probability were
then selected to obtain the final structure. In the first stage of this study, two
structures were learned using dataset A. The first structure was learned using
only control subjects (Fig. 1). The rationale is to model the healthy controls



in order to avoid the potential bias introduced by the scoring metric AGIS.
In fact, the AGIS score is based only on visual field test and its performance
seems insufficient especially for early glaucoma, therefore a bias is introduced by
supervising the learning process just on it [22], [11], [2]. Learning the network
only on healthy subjects provides a more reliable framework, which can then be
combined with AGIS score by training the parameters of the network on AGIS
labeled data. This approach can be seen as a form of semi-supervised learning
based on control subjects using the AGIS score (which can be seen to accurately
identify controls). This network appears to perform better in classification than
the complete AGIS supervised learned networks or the controls supervised one.
A second stage involved the exploration of expert knowledge modeling and its
performance in classification. To this purpose, we modeled the relations showed
in the structure-function map proposed in [10] imposing arcs between correspon-
dent sector-based VF values and retinal values. The network was then trained
on unsupervised data, in order to be independent on all clinical metrics. The
aim of using this BN is to assess the different results obtained with a network
based only on prior anatomical knowledge, and to explore whether its possible
to understand more about glaucoma and to improve classification performance
together with the data-driven network.

Fig. 1. Structure learned on dataset A using Simulated Annealing on controls subjects.
Lighter arcs represent lower probabilities.

2.3 Combining Networks

The natural next step was thus to combine the two networks described above,
to exploit base classifiers outputs and obtain the best performing and illustra-
tive results. In fact the data-driven network seems to be better at excluding



negative patients than the anatomy based, whilst the latter seems to produce
often different results, having a higher sensitivity at low specificities. There is a
broad literature on ensembles of classifiers [15], [18] and given the input available
(i.e. probabilistic outputs from base BNs), a non-generative stacked structure en-
semble was chosen [4]. Non-generative ensemble methods try to combine existing
base classifiers, without acting on the base classifiers structure. Stacked ensem-
bles use Machine Learning techniques on the top of the base learners, using their
output as a set of input data for the final combiner. In particular, since the aim
is not just in terms of performance but also in understanding how data and
anatomy driven networks interacts to improve results, a BN model was chosen.
This type of BN has been proved to be an effective combiner in [8], although
improved performances can be obtained only if the individual classifiers disagree
with each other [12]. A third BN was then imposed to combine the outputs from
the other two networks (Fig. 2A): each output was discretized in 8 states and
then linked to a 2 states class node. As a result, an 8x8 matrix showing the
interactions between the two networks was obtained by observing the CPD of
the class node (Fig. 2B). In order to optimize the CPD, the matrix was then
smoothed using a mean-filter window of size 3. For validation purpose, a com-
bination of the outputs was also performed using a weighted voting approach
[21]. The weights were adjusted in relation to the accuracy of the base networks.
An optimized combining BN was also set up by weighting its output with the

Fig. 2. A. Combining Bayesian Network. B. Instance of a raw CPD of the class node.
Each value represents the probability of positive output for each combination of base
classifiers inputs (i.e. the final output of the combining network).



accuracy of the base networks. In particular, the output of the BN combined
network was weighted on the accuracies of each base BN classifier as follows:

> for i = 1:size(TestDataset)

> Weighted_output(i) = (output_BN1(i) * accuracy_BN1(i) +

output_BN2(i) * accuracy_BN2(i)) /

sum(accuracy_BN1, accuracy_BN2)

> Final_output(i) = mean(output(i), Weighted_output(i))

> end

The probabilistic outputs is in this way biased towards the output provided by
the most accurate base classifier.

3 Results

Results were evaluated using 3-fold cross validation on dataset A and 6-fold
cross validation on dataset B. Different folds reflect the different sizes of the
datasets. The performance of the single and the combined networks are shown
in Table 2 and Fig. 3. Same tests were performed considering only the pre-
diagnosis data subset of dataset B, in order to take into account only patients
converting to glaucoma. This leaded to results qualitative very similar to those
in Table 2. Considering the overall performances on the full datasets A and B,

Table 2. Performances of different BNs tested in terms of mean AUROC and total
errors at maximum accuracy and at 90% specificity.

Dataset A Dataset B

AUROC Errors Errors at AUROC Errors Errors at
90% spec 90% spec

Semi-Supervised BN 0.98 6 13 0.87 84 206
Anatomy-based BN 0.98 7 13 0.75 110 326
Weighted Vote Combined 0.98 5 13 0.84 90 252
BN-based Combined 0.98 8 12 0.87 93 186
Accuracy Weighted BN 0.98 5 12 0.85 93 118

the semi-supervised data-driven BN performs better than the expertise-driven
based one and at least comparable to the combined ones. On dataset A, however,
the performances of all the classifiers are comparable. Among the combined
classifiers, the Weighted Vote is outperformed only at high specificities, but
in dataset B its outperformed by both the other combined networks. The BN
combined networks perform well in both datasets, the accuracy weighted one



being better on dataset A but worse on dataset B. Their performances were the
best for higher specificities. Looking at the ROC curves in a particular test on
dataset B it can be seen that the performances of the base semi-supervised data-
driven BN are the highest at mid-specificities. However, at higher specificity,
the BN combined networks are comparable or outperform it, as showed also in
Table 2. On dataset A the performance of the two base BNs are more similar
and often the expertise-driven BN outperforms the other (Fig. 4). The Weighted
Vote classifier performs better at low specificities as pointed out considering the
total errors.

Fig. 3. ROC curves of classifiers in a test with 6-fold cross validation on dataset B.

4 Discussion

The semi-supervised network is clearly performing very well at all specificities.
The conservative nature of AGIS metric score and the idea of modeling controls
show the effectiveness of data and BNs in classification. However, the bias intro-
duced by using AGIS score in the inclusion criteria and its unreliability must be



kept in mind, especially for dataset B where conversion diagnosis is a more dif-
ficult task and it’s defined using the AGIS score. The expertise-driven network
on the other hand seems not to perform as well as the other. However, vari-
ability was found in the results obtained, so that improvements in performances
can be theoretically obtained with a combination of them. In fact, as pointed
out in [20], diversity and accuracy of base classifiers are key factors for better
performing ensembles of classifiers. Diversity (and correlated independency) was
obtained by using an unsupervised approach on the expertise-network. This con-
sequently decreased the performances of the base classifier but increased those
of the combined ones in many cases, especially at higher specificities. Perfor-
mances at different specificities are of great interest. For glaucoma, which is a
relative low frequency disease, high specificities are preferred. This reflects the
higher weight put on the FP to minimize its occurrence. In this context, the
performances of the accuracy Weighted Vote classifier decrease when the speci-
ficity increases. This occurs also in the BN combining network weighted on the
accuracy, as expected. On the other hand, the simple BN combining classifier
is not biased toward the accuracy and this allows the classifier to outperform
all the others at high specificities. In fact, looking at the ROC curves it can be
seen that with an increase of accuracy of the anatomy-based network there is a
decrease in performance of the accuracy weighted ones. In this particular case
this is due to the expertise-driven network that doesnt outperform the other at
any specificity. However, on dataset A, the opposite situation was observed. In
Fig. 4 a ROC curve is showed for dataset A, showing the higher performances of
the BN Accuracy-Weighted classifier with respect to the non-weighted one. The

Fig. 4. Top-left zoom of a ROC graph for a 3-fold cross validation test on dataset A.

higher number of total errors in Dataset A could therefore be explained by the
differences in the datasets and the different performances on them: on dataset A
the diversity between the results of the base classifiers is lower than in dataset B,
leading to worse combined performance. Therefore, a single BN achieved strong
results on dataset A (being more easy to classify), so that adding a weaker BN



didn’t lead to any improvement. This highlights the importance of choosing the
most efficient base classifiers, and could lead to further study in generative en-
sembles of classifiers (i.e. active learning of base classifiers to improve diversity
and accuracy of base classifiers) [13]. It must be pointed also out that the struc-
tures of the base classifiers were learned and trained on dataset A, introducing
a bias with respect to the performances. Again, AGIS score was in the inclu-
sion criteria for both datasets, adding difficulties in comparing performances of
classifiers supervised on AGIS itself or unsupervised. The difference in perfor-
mances obtained with the two base classifiers and the two datasets points out
another key point about datasets and a strength of combining them. Data is very
noisy due to the absence of a gold standard and to the high variability of the
measurements [22], therefore a generalized algorithm that accords itself to the
best performing network independently on the data is desirable. This seems not
correctly obtained using accuracy weight, as the training and the testing dataset
can be very different: considering an example, if dataset A is used to train an
accuracy-based network and dataset B is used to test it, results will be insuffi-
cient as the accuracies are not similar for the same networks in both datasets.
The idea here would be to use an independent dataset of the same type (cross-
sectional or longitudinal) for training and testing: using cross-sectional data to
build models used with longitudinal data is often not advisable [1]. Further, a
broader search on both datasets for a network that shows more accurate and
diverse performances than the other could lead in this case to better results for
both datasets. An interesting advantage offered by the BN combining classifiers
is the possibility to observe at the CPD for the class node. This gives us interest-
ing insights about how the network works and how the two outputs combine to
obtain better results. In Fig. 3B a CPD is showed: for each discretized value of
the base classifiers a probability is learned from the data and can be observed.
This reflects the output of the final classifier, in particular the probability of
diagnosis of glaucoma for each combination of inputs. Observing the CPDs ob-
tained in an instance of a CPD in Fig. 2, the higher values in the matrix are
skewed towards the bottom-left, i.e. the AGIS semi-supervised network is more
reliable at high specificities (for all values of the expertise-driven network, if the
data-driven network’s output is low then the combined output must be low).
Some 0 values are obtained in the corners of the matrix, due to the lack of data
for these combinations of outputs: these cells are smoothed with the mean-filter
application. Looking at lower values of the data-driven base network (e.g. value
3), the output of the expertise-driven network increases the probability of glau-
coma sensibly, adding its knowledge to the result. Several different instances of
this matrix have been found in this study, showing again variability between dif-
ferent datasets used. Thus, the exploration of the CPD of the combined network
confirms the higher performances at high specificity of semi-supervised data-
driven network, but also gives a quantitative measure of the improvement that
each single base classifier brings to the final output. Further study using this
approach will be carried in the future, for example by acting on the CPDs or



averaging on them, as well as using different discretization and more complete
datasets.

5 Conclusion

This preliminary study has showed the possibilities of using BNs for classifi-
cation and exploration of different dataset in a real problem. Data-driven BN
classifier outperformed the expertise-driven one, even if with different magnitude
on different datasets. Combining networks have been showed to be both effective
in terms of performances and illustrative. In particular, the performances of the
combined classifier seem to be better for datasets with more different results for
the base classifiers. Given the issues of the datasets, the idea of using simulated
data for future work could give a start to more deep analysis of BNs potential
in modeling data and combining classifiers, keeping in mind the importance of
an effective choice of the base classifiers.
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Abstract. The Hierarchical Mixture of Experts (HME) is a well-known tree-
structured architecture which can be considered a natural extension of the Mixture of 
Experts (ME) model. The standard HME model hierarchically splits the input space 
into a nested set of subspaces, the gating networks being used to specialize the experts 
on each subspace. Recently, data splitting based on random prototypes has been 
proposed to increase the diversity of classifier ensembles. In this paper, instead of 
stochastically partitioning the input space, we propose to split the space into 
centralized regions derived from randomly selecting some prototypes from the data 
points available for training. The training and testing strategies of the standard HME 
are modified accordingly. In particular, the proposed approach does not require to 
train the gating networks as they are implemented with simple distance-based rules. 
This way, the overall time required for training an HME is considerable lower. It is 
also worth pointing out that centralizing input subspaces and adopting a random 
strategy for selecting prototypes permits to increase at the same time individual 
accuracy and diversity of HME modules, which in turn increases the accuracy of the 
overall ensemble. Experiments are performed on an artificial toy problem and on 
selected datasets from the UCI machine learning repository and obtained results point 
to the robustness of the proposed method compared to the standard HME model.

Keywords: Classifier ensembles, Hierarchical Mixture of Experts (HME), Neural 
Networks, and Random prototype-based data splitting.

1   Introduction

Most real-world pattern recognition problems are too complicated for a single 
classifier to solve. Divide-and-conquer has proved to be efficient in many of these 
complex situations, using a combination of classifiers which have complementary 
properties. The issues are (i) how to divide the problem into simple subproblems, (ii) 
how to assign base classifiers to solve these subproblems, and (iii) how to obtain the 
final decision using their outputs. 

If it is possible to naturally decompose the problem then this can be done 
manually. However, in most real-world problems, we either know too little about the 
problem, or it is too complex to have a clear understanding of how to manually 
decompose it into subproblems. Thus, a method for automatically decomposing a 
complex problem into a set of overlapping or disjoint subproblems is desirable, 



assigning one or more classifiers (experts hereinafter) to each subproblem. The 
remaining question is how to combine the outputs of these experts if the 
decomposition scheme is unknown a priori. 

Jacobs et al. [6, 7] have proposed an ensemble method based on the divide-and-
conquer principle called Mixture of Experts (ME), in which a set of networks referred 
to as expert networks is trained together with a gate network. This tight coupling 
mechanism (i) encourages diversity between the single experts by automatically 
localizing them in different regions of the input space and (ii) achieves good 
combination weights of the ensemble members by training the gate which computes 
the dynamic weights together with the experts. 

The Hierarchical Mixture of Experts (HME) [8] is a well-known tree-structured 
architecture, which can be thought of as a natural extension of the Mixture of Experts 
(ME) model. The expert networks form the leaves of the tree, whereas gating 
networks are located at the branch-points. Tasks are approached using a “recursive” 
divide-and-conquer strategy: complex tasks are decomposed into subtasks which in 
turn are themselves decomposed into sub-subtasks. Like many known classical neural 
network ensemble methods, diversity in the standard HME is promoted by randomly 
initializing their weight parameters. This choice drives experts to start learning their 
task from different points in the search space, with the goal of getting them 
specialized on different subspaces.

Many of the earlier works on the ME and HME models use preprocessing to 
partition or transform the input space into simpler and more separable spaces. An 
expert is then specialized on each subspace without altering the learning rules 
established by the standard ME model. As a consequence, the major effort in earlier 
works has been spent in the task of increasing the individual accuracy of experts –so 
to facilitate their task on the corresponding areas of expertise. Waterhouse and Cook 
[13] and Avnimelech and Intrator [3] proposed to combine ME with the boosting 
algorithm. Since boosting encourages classifiers to become experts on patterns that 
previous experts disagree on, it can be successfully used to split the data set into 
regions for the experts in the ME model, thus ensuring their localization and diversity. 
Tang et al. [11] tried to explicitly “localize” experts by applying a cluster-based 
preprocessing step, headed at partitioning their input space. In particular, they used 
self-organizing maps (SOM) to partition the input space according to the underlying 
probability distribution of the data. As a result, better generalization ability together 
with more stability in parameter setting is achieved. Nevertheless, as they argue at the 
end of the paper, the proposed method has been designed for (and validated on) only 
binary and low dimensional problems. Wan and Bone [12] used a mixture of radial 
basis function networks to partition the input space into statistically correlated regions 
and learn the local covariance model of the data in each region. Ebrahimpour et al. [4] 
proposed a view-independent face recognition system using ME by manual 
decomposition of the face view space into specific angles (views), an expert being 
specialized on each view. Nevertheless, the proposed method is only efficient in 2D 
face recognition and, as argued by the authors, extending this approach to other 
classification problems and applications could be challenging and not always 
possible.

It is worth pointing out that, in the original formulation of the ME model, 
parameters are determined by maximum likelihood, which is prone to severe 



overfitting –including singularities in the likelihood function. This can be particularly 
problematic in a complex model such as the HME, due to the relatively large number 
of parameters involved in defining the distributions for experts and gating networks. 
Indeed, there are many singularities in the likelihood function which arise whenever 
one of the mixture components “collapses” onto a single data point. In any case, 
simultaneously training gating networks and experts in an HME architecture (with the 
goal of obtaining sufficiently accurate classifiers with relatively optimum parameters) 
continues to pose a research challenge.
Recently, Armano and Hatami have proposed a classifier selection method to be used 
in selection-fusion strategies [2]. The method called Random Prototype-based Oracle, 
RPO, splits the input domain based on some prototypes selected randomly from 
training data and then builds a classifier on each subset. These classifiers are used in 
combination with an oracle that knows the area of expertise of each classifier, thus 
generating a miniensemble. Thanks to the random nature of this splitting procedure, 
miniensembles created on a specific problem differ from one run to another. Each 
miniensemble can be used as base classifier in any ensemble strategy to improve its 
accuracy without increasing the computational cost required for training. 
Subsequently, Armano and Hatami extended their idea using a splitting based on 
random prototype in the ME model [1]. In their modified ME model, called “Mixture 
of Random Prototype-based Experts”, the input space is partitioned according to the 
nearest distance from randomly-chosen prototypes. This facilitates the adoption a 
weighting policy based on distances in both training and testing. In other words, 
instead of a complex gating network which needs training process to adjust its weight 
parameters, the proposed gating function manages both training and testing using a 
distance-based measure. Their experimental results highlight that removing the 
weight parameters from gating networks allows to decrease the number of ME 
parameters, thereby simplifying the search and significantly reducing the time 
required for training.

In this paper, we extend our recent contributions and propose a method to embed a 
set of random prototypes into each module of the HME model. Instead of specializing 
each expert on a stochastic and nested area in the feature space, ME experts focus on 
the centralized subspace defined by their corresponding prototypes. This allows to 
simplify the gating networks with simple distance-based measures, thus simplifying 
the structure of the modified HME model. Moreover, while increasing the individual 
accuracy of the ME modules used in the first layer of an HME architecture, their 
diversity is also expected to increase –due to the random selection of prototypes 
(which makes the prototypes of a module different from those used the others). 
Finally, the time required to train the proposed HME architecture dramatically 
decreases due to the large saving in the training time of each ME module.

The rest of this paper is organized as follows: in Section 2, we present the standard 
HME model for building classifiers. In Section 3 we briefly recall the random 
prototype-based splitting and then introduce the proposed hierarchical mixture of 
random prototype-based experts. Experimental results are reported and discussed in 
Section 4. Section 5 concludes the paper and briefly outlines future research 
directions.



2   The Hierarchical Mixture of Experts model

The HME architecture (Fig. 1) is a tree in which the gating networks lie at the 
nonterminal nodes and the expert networks lie at the leaves of the tree. Hence, it can 
be considered as an ensemble of ME modules (as shown by dashed boxes).The task of 
each expert is to approximate a function over a region of the input space. The task of 
the gating network is to assign the weights to each expert based on its contribution for 
each sample. Fig. 1 illustrates a mixture of four experts. In accordance with the 

typical terminology used for describing HME architectures: x


is the input vector, 

( )ijo x


is the output (expected value) of the ijth expert, ( )ig x


is the output of the top 

gating network denoting the prior probability for the pattern to be generated by the 
left or right branch of the root, and ( )j ig x


is the output of the ith bottom gating 

network denoting the prior probability that the pattern is generated by the ijth expert. 
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using notations defined for the two-level depth tree shown in Fig. 1, notations that can 
be easily extended to larger HME networks with a binary tree architecture.

Fig. 1: Block diagram representing a two-layer HME. The generic model shown here has four 
experts (two ME modules, each containing two experts) and three gating networks (which act 
as mediators).

Two training procedures are suggested in the literature [6, 7, 8] for finding optimal 
weight parameters of the HME architecture. The first is the standard error back-



propagation algorithm with gradient descent, whereas the second is based on the 
Expectation-Maximization (EM) method. 

3   Hierarchical Mixture of Random Prototype-based Experts

This section presents the proposed hierarchical mixture of random prototype-based 
experts (HMRPE) in more detail. The key underlying idea is to randomly partition the 
input space of the problem into subspaces and then pushing each expert to specialize 
on its subspace by means of “soft” competitive learning.

3.1 RP-based splitting for HME
For each ME module of an HME architecture, the input space is partitioned 

according to some prototypes randomly chosen from the training set. This way, input 
samples can be weighted during the training and testing phases based on their 
distances from the selected prototypes. The main advantage of this method is that, 
instead of a complex gating network which must be trained concurrently with other 
experts, the generated gating function has no parameters (weights) to adjust –as it 
simply enforces a distance-based weighting policy. Fig. 2 illustrates the block 
diagram representation of the proposed HMRPE model on a typical binary toy 
problem.

Fig. 2: Block diagram representation of the proposed HMRPE model operating on a typical 
binary toy problem (bold block points denote randomly-selected prototypes).

For the sake of simplicity, we first describe the random prototype-based data 
splitting on a synthetic two-class problem shown in Fig. 3.a. Then, we describe how 
the modified HME model takes advantage of this partitioning.

We use two different partitioning methods, i.e. disjoint and overlapping, shown in 
Fig.3.b. and 3.c., respectively. In the case of disjoint partitioning, we first measure the 
distance between each training sample and the prototypes, and then assign a fixed 



value, j to the ih of an expert proportional to these distances. ih is an estimate of 

the “a posteriori” probability for the ith expert to generate the desired output o and 
used as the coefficient of the learning rate for updating the weight parameters of the 
expert. This means that the weights of the expert network whose prototype is nearest 
to the current input sample will be updated more than those belonging to the other 
experts. Similarly, in the testing phase, experts whose prototypes are nearest to the 
input sample will contribute to a greater extent to the final output.

Fig.3: Partitioning of a 2-class semantic classification problem using N=3 random prototypes 
(bold points denote prototypes randomly selected from training data): a) original problem, b) 
partitioning into three disjoint regions based on the nearest distance from the prototypes, c) 
partitioning into three overlapping subspaces.

Unlike disjoint partitioning, where the learning rate coefficients are the same for 
one partition and change sharply from one to another, in the overlapping method they 
change smoothly –i.e., proportionally to the distance with the corresponding 

prototype. Similarly, the amount of id for the ith expert depends on how close the 

expert’s prototype is to the current input sample id . In other words, while using the 

disjoint method, the degree of expertise of an expert is fixed within the corresponding  

partition, whereas for the overlapping method it smoothly varies with the id distance 

from the prototypes embedded by the expert itself.
It is worth pointing out that the proposed method is general enough to be applied 

with both standard error back-propagation and EM learning rules. Fig. 4 reports the 



algorithm for training and testing a hierarchical mixture of random prototype-based 
experts using both disjoint and overlapping partitioning rules for any selected learning 
method. Let us note that the learning rules of the first-layer gating networks (gating of 
the ME modules) change with respect to the standard HME model, whereas the gating 
networks of the other layers (second, third, and so on) do not.  

 
 

 
1

R a n d o m P r o to ty p e -b a s e d H M E

IN IT IA L IZ IN G :

L e a r n in g S e t , T e s t t in g S e t

1, 2 , . . . ,

s t r a te g y s ta tic , d y n a m ic

( 0 ,1) 1, 2 , . . . , s u c h th a t :

; 1, 2 , . . . , 1 a n d 1

T R A IN IN G :

F o r m o d u le D o :

i

j

k k j
j

L S T S

i N

E j N

k N E

jth M E H M E

 



  

 

 



  

    





�

�

�

�

 
 

 

F o r e a c h D o :

c h o o s e ra n d o m ly p ro to ty p e s f ro m th e ; 1, 2 , . . . , ;

( ) ( ) 1, 2 , . . . , w h e r e

( ) a n d . is a n y d is ta n c e m e tr ic ( e .g . E u c lid e a n )

( ) ( ) 1, 2 , . .. , w h e re

( ) re p re se n ts th e e x p e c

j i j

i j

i j ij

i j

i

x L S

N L S P p L S i N

D x d x i N

d x x p

H x h x i N

h x



  

 

 

 

�

�

�

i

*

te d c a p a c ity o f ε to d e a l w ith th e g iv e n in p u t

[s tra te g y s ta t ic ] : ( ) w h e re R a n k ( , ( ) )

[s tra te g y = d y n a m ic ] : ( ) 1 w h e re ( ) ( )
( )

u p d a te e a c h e x p e r t ( 1, 2 , . . . , ) a c c o rd in g to th e s ta n d a rd le a rn

i j k i j

ij
i j k

k

ij

x

h x K D x

d
h x D x d x

D x

i N

 



  

  




�

 
 

*

in g ru le fo r M E

T E S T IN G :

F o r m o d u le D o :

G iv e n a n D o :

( ) ( ) 1, 2 , . . . ,

( ) ( ) 1, 2 , . . . , w h e re

[s tra te g y = s ta t ic ] : ( ) w h e re R a n k ( , ( ) )

[s tra te g y = d y n a m ic ] : ( ) 1 w h e re ( )
( )

i j

ij

i j k i j

i j
ij

j th M E H M E

x T S

D x d x i N

G x g x i N

g x k D x

d
g x D x

D x

 




 

 

 

  

�

�

1

*

( )

c a lc u la te th e o v e ra l l o u tp u t :

( ) ( ) . ( , )

s e le c t th e c la s s la b e l s u c h th a t

a rg m a x ( ( ) )

R a n k ( , ( ) ) re tu rn s th e  ra n k o f e x p e r t ( i .e . a n u m b e r in [1, ] ) a c c o rd in g to th e d is ta n c e

( ) e v a lu a t

k
k

N

k ij ij
i

l

k
k

i i

d x

o x g x o x W

c

L o x

k D x N

D x

 













�

�

e d o n th e in p u t x ( th e lo v e s t th e d is ta n c e , th e h ig h e s t th e ra n k in g )

Fig.4: Hierarchical Mixture of Random Prototype-based Experts Algorithm.

3.2 Why does HMRPE work?
Notwithstanding the big of empirical studies proving that diversity and individual 

accuracy of ensemble members are two primary factors that affect the overall 



classification accuracy, theoretical studies clearly show that they are not independent
[9]. Hence, the success of the proposed HMRPE approach can be attributed to three
factors as follows:

1. Splitting the input space into N centralized parts makes the subproblems easier 
to learn for the expert network. As a consequence, the individual accuracy of 
the ensemble members is expected to be better than, or at least not worse than, 
the one exhibited by sets of experts specialized over the nested and stochastic 
subspaces. It is worth noting that, although expected, higher individual 
accuracy is not guaranteed by any means, since it depends on the complexity 
of classification boundaries, on the adopted learning algorithm, as well as on 
the position of the selected prototypes. Fig. 5 compares the regions of 
expertise of an ME module embedded in the both standard HME and HMRPE 
on a four-class toy problem. The first figure from the left in the top, shows the 
original problem and the next three figures are nested areas of expertise of 
three experts in the standard ME module. At the bottom, splitting of the 
problem using three random prototypes is shown in the first figure. The next 
three figures show the centralized areas of expertise of three experts in the 
proposed HMRPE module.

Fig.5: Comparison between the standard HME model and the HMRPE model 
for a 4-class toy problem.

2. Since each ME module embedded in the HMRPE architecture has its own set 
of prototypes (which are different from those embedded by the other ME 
modules), experts have been specialized on very different data subsets – thus 
enforcing diversity.

3. The accuracy of HME classifier is affected by the performance of both experts 
and gating networks. Accordingly, resulting misclassifications in this model 
derive from two sources: (a) the gating networks are unable to correctly 
estimate the probability for a given input sample and (b) local experts do not 
learn their subtask perfectly. Since simple distance rules used by the gating 
function are more robust with respect to errors in determining the area of 
expertise of an expert, errors in the proposed HMRPE model are mainly 



limited to the error made by the expert networks –thus improving the overall 
accuracy of the overall classifier.

4  Experimental Results

Some of the UCI machine learning data sets [10] have been used to check the 
validity of the proposed method. These data sets include real-world and synthetic 
problems, with variable characteristics, previously investigated by other researchers. 
Table 1 shows the selected datasets with more detail.

Table1. The main characteristics of the selected UCI datasets.

Problem # Train # Test # Attributes # Classes

Iris 150 - 4 3

Satimage 4435 2000 36 6

Pendigits 7494 3498 16 10

Letter 20000 - 16 26

Vowel 990 - 11 11

Segment 210 2100 19 7

Glass 214 - 9 7

Yeast 1484 - 8 10

We used 10-fold cross validation to ensure statistical significance while evaluating 
the accuracy of classifiers. To build the standard HME and the proposed HMRPE 
models, we used a Multi-Layer Perceptron (MLP) architecture with one hidden layer, 
trained with the back-propagation learning rule [5]. To determine the best value for 
the N number of partitions, which is equal to the number of experts, we varied it from 
2 to 10 for each dataset. We also varied the number of hidden neurons in expert 
networks to experimentally find the optimal architecture of the MLP experts for each 
problem. The results of these experiments (shown in Table 2) highlight that the 
proposed method outperforms the standard HME model for all selected datasets –no 
matter whether disjoint or overlapping partitions are adopted.

Table 2. The mean and standard deviation of accuracy of the HME vs. the proposed 
HMRPE on the selected UCI datasets (in percentage).

Iris Sat. Pen. Lett Vow. Seg. Gla. Yeast

Standard
HME

88.7±
0.59

88.6±
1.05

88.0±
0.43

71.5±
0.94

60.9±
1.55

79.0±
0.85

72.1±
1.75

50.6±
2.22

Disjoint 
partition

89.3±
0.42

90.9±
0.80

89.5±
0.44

73.0±
0.73

63.8±
1.00

82.2±
0.68

75.8±
1.77

52.7±
1.56

Overlapping 
partition

89.6±
0.40

91.1±
0.78

90.2±
0.31

73.8±
0.82

64.4±
1.21

82.9±
0.79

76.9±
1.44

54.0±
1.45



The time required for training the different datasets is shown in Table 3 for further 
comparison. Table 3 highlights that the training time of the proposed method is 
considerably shorter than the standard version. Simulations are performed using an 
Intel CPU with 2.83GHz and 4GB RAM memory. Note that the results presented here 
which compare standard HME and the proposed method, use the same parameters and 
architecture.

Table 3. Training time of the HME vs. HMRPE (seconds).

Iris Sat. Pen. Lett. Vow. Seg. Gla. Yeast

Standard 
HME

84 324 451 604 99 71 44 67

HMRPE 57 198 311 451 63 53 30 42

5   Conclusions and future directions

A modified version of the popular HME algorithm is presented here. Unlike the 
standard HME, which specializes expert networks on nested and stochastic regions of 
the input space, the proposed method partitions the sample space into subspaces based 
on similarities with randomly-selected prototypes. This strategy enables to define a 
simple rule for the gating network for both training and testing. As shown by 
experimental results, despite its simplicity, the proposed method improves the 
accuracy of the standard HME model and reduces the training time. 

Future works focus on defining a procedure for automatically determining the 
number of optimal experts for each problem without resorting to complex 
preprocessing and time consuming methods. Adapting this method to simple distance-
based classifiers instead of neural networks is another interesting future research 
direction, aimed at reducing the training time of the overall network while 
maintaining high accuracy.

We are also currently making some experiments on heuristics able to help in the 
process of partitioning the input space instead of using random prototypes. 
Furthermore, as the proposed approach is not limited to neural networks, it would be 
interesting to investigate the behavior and performance of other learners in the 
proposed HMRPE architecture.
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Vilnius University and Eindhoven University of Technology
zliobaite@gmail.com

Abstract. Divide-and-conquer approach has been recognized in multi-
ple classifier systems, aiming to utilize local expertise of individual clas-
sifiers. In this study we experimentally investigate three strategies to
build local classifiers, based on different sampling for training routines.
The first two are based on clustering the training data and building a
separate classifier for each cluster or a combination. The third one di-
vides the training set based on a selected feature and builds a separate
classifier for each subset. Experiments are carried out on simulated and
real datasets. We report improvement in final classification accuracy as
a result of combining the three strategies.

1 Introduction

In supervised learning tasks local models tailored to a particular subgroup are
often applied [4,7,8,10,12]. The intuition behind such multiple classifier systems
is to maintain explicit specialization of individual classifiers.

Consider a task of evaluating scientific research proposals for funding. Given
a research proposal in accordion music we would like to assign it to an expert in
music rather than biology.

There are two main design issues to be determined when constructing such
systems of local classifiers. The first is how to partition the training data to form
groups of local expertise. In the research funding example, the submission tracks
might be formed in different ways: based on the area (biology, music, literature,
physics), theoretical versus industrial projects, based on the size of a requested
budget or combination of all criteria. Thus the issue is how to train the local
experts to achieve local specialization (directed diversity).

The second design issue is how to determine to which local classifier to assign
the incoming new data. In the research proposal example, suppose there is only
the proposal text available, no leading document. A secretary scans through
all the incoming proposals to determine whether it is biology or music. Thus
the issue is how to associate an incoming instance with a particular group of
expertise.

A popular design of such systems is to cluster the training data and train
a separate classifier on each cluster. Then the incoming data is assigned for
decision making based on cluster membership (e.g. [4, 8, 12, 13]). Depending on



the data, this approach might lead to rather uniform class membership within
one cluster and raise challenges for individual classifier training. To overcome
this we introduce one modification and one alternative partitioning technique.

We experimentally analyze the three strategies for data partitioning to build
local classifiers. The effects to the final classification accuracy are demonstrated
using a simulated dataset and six real datasets. We report improvement in final
classification accuracy as a result of combining the three strategies.

The remainder of the paper is organized as follows. In Section 2 we present
three alternatives for training local classifiers. In Section 3 we illustrate the al-
ternatives by analyzing toy dataset example. In Section 4 we present and analyze
experimental results using six real datasets. In Section 5 we conclude.

2 Alternatives for Building Local Classifiers

There are two directions for designing multiple classifier systems with local ex-
pertise. The first is to generate a pool of classifiers using randomized choices of
training set for each individual classifier and then ensure the diversity by the
fusion rules (e.g. bagging [2], see also a review [3]).

Our focus is on the second type, which partitions the dataset in a directed
manner to form local groups of similar data (e.g. clustering approaches taken
in [4, 8, 12]). We call this a directed diversity. The input space can be divided
into regions of competence either based on features or instances or both. We
analyze three alternatives for partitioning of the training data, two instance
based partitioning and one partitioning in feature space.

2.1 Instance Based Partitioning

A popular way to partition the data for building local experts is clustering [4,8,
12]. Let X ∈ <p be the input space, partitioned into k subsets R1, R2, . . . , Rk us-
ing a selected clustering algorithm. An ensemble of classifiers L = L1, L2, . . . , Lk
is trained using the corresponding subset for each classifier: Li = f(Ri). Note
that unlabeled data is used for partitioning, while for training local classifiers
the class labels are needed as well. We refer to this technique as CLU.

There are two main design issues to decide for CLU: to choose the number of
clusters k as close as possible to the nature of the data and choose an algorithm
(and distance metric) for clustering.

Back to the research proposal example, assume we have a pile of historical
not annotated documents, but we know (domain knowledge) that the proposals
came from three departments: biology, physics and music. Thus we probably
choose to cluster all the documents into k = 3 clusters. If we do not have the
background knowledge, we need to guess k.

After the local classifiers are trained, the question is how to assign new in-
coming instances. In CLU it is typically assigned to the closest cluster center.
Apparently, the same distance metric as in the original clustering shall be used.
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Fig. 1. Illustration of CL2 partitioning.

In the proposal example the ultimate task is to classify the new incoming
document into ’accept’ and ’reject’. Given a new incoming document we do not
know its label, but we can extract the content features the same way we did for
the historical data. Based on the features we can assign the document to one of
the existing clusters. Based on the cluster assignment we apply a local expert to
output the decision ’accept’ or ’reject’.

Clustering seems to be a reasonable approach to build local classifiers. How-
ever, there is a problem related to class membership. The clusters might capture
the actual class membership (’accept’ or ’reject’). This results in rather homo-
geneous clusters in terms of class labels (all ’accepts’ in one cluster, ’rejects’ in
other). It might pose a problem for training a classifier, as there would be not
enough examples from other classes for training.

We propose an alternative to overcome capturing class discriminative infor-
mation. The idea is to cluster the classes separately and then make all possible
combinations of the clusters taking one cluster from each class. Let
X(1), X(2), . . . , X(c) be a partitioning of the historical data based on the class
membership, where c is the number of the classes. First we cluster each X(i)

to obtain ki subsets R
(i)
1 , R

(i)
2 , . . . , R

(i)
k1 . Then we train an ensemble, consisting

of k1 × k2 × . . . × ki classifiers: R
(1)
i1 ∪ . . . ∪ R

(c)
ic → Li1i2...ic. This allows to

handle the problem of class imbalance within one cluster. Note that subsets

R
(1)
1 , R

(1)
2 , . . . , R

(1)
k1 , . . . , R

(c)
1 , R

(c)
2 , . . . , R

(c)
k1 do not intersect and together form

an input data X. We refer to this technique as CL2.

Differently from CLU, in CL2 the data is partitioned within each class sepa-
rately. This way class discriminatory information does not affect the partitioning.

We assign a new incoming instance for a decision making the same as in CLU,
based on the proximity to the cluster centers. However in CL2 it is assigned to
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Fig. 2. Modeling dataset.

c nearest clusters (one from each class), since naturally we do not know the true
class membership of the incoming instance.

CL2 approach requires the number of clusters k1, k2, . . . , kc as parameters.
The intuition relates to the same proposal example. The ’rejected’ proposals

in biology might be the most similar in content to the ’accepted’ proposals in
physics. Thus we are interested to learn the peculiarities to distinguish between
the two. So we cluster first all the ’accepted’ documents. Then we cluster all the
’rejected’ documents independently. Then build a local classifier using the two
closest clusters as a training set. We illustrate CL2 in Figure 1.

2.2 One Feature Based Partitioning

We propose an alternative to clustering based partitioning (FEA). The data
can be partitioned based on one selected feature, like bread slicing. Assume we
would like to get k subsets of the training data. We select a feature x s, where
s ∈ p (feature space) and split it into k equal intervals. Let δk = max xs−min xs

k .
Then the ith interval is ri : [min xs+ (i−1)δk,min xs+ iδk)1. The historical data

is partitioned into subsets R
(F )
1 , R

(F )
2 , . . . , R

(F )
k , where Xj ∈ R

(F )
i if x js ∈ ri.

Then a local classifier is trained on each subset. A new incoming instance will
be assigned to a classifier based on the value of its xs feature the same way.

In the research proposal example, assume there are experts, which are good
in evaluating short and concise proposals and another experts, which are good
in long detailed proposals. In such case the subsets might be formed based on
the number of words in the document, having it as a feature in the feature space.

There are two parameters to be specified for FEA: k and xi. The selection of
xi is to be based on the domain expertise or visual inspection of the data.

3 Analysis of the Toy Dataset

We construct a toy example to explore CLU, CL2 and FEA partitioning tech-
niques. We generate the following heterogeneous dataset in 2D. Four data subset

1 The value min xs + kδk = max xs for the last interval rk is inclusive.



centers are fixed at (0, 0), (4.5, 3), (1, 3), (3, 0.1). Two of them we label as ’class
1’, the other two as ’class 2’. The data is illustrated in Figure 2. We generate
5000 normally distributed instances in a subset.

It can be seen that the data is linearly inseparable. However, a multiple
classifier system, consisting of locally specialized linear classifiers could do it.

3.1 Testing Scenario

Testing set. We generate an independent testing set using the same distribution
as for training. We generate a testing set of 20000 instances in total.

Performance metrics. We compare the alternative techniques based on
testing error as an indicator of generalization performance. The prediction er-
ror is used, where outputs are not rounded (an experimental design choice, no
specific reason). A standard error is calculated assuming Binomial distribution

over testing errors SE =
√

E×(1−E)
N , where E is the observed error and N is

the testing sample size.
Alternative techniques. We experimentally compare the performance of

CLU, CL2 and FEA. For an illustration of the three techniques on the modeling
data see Figure 3. ’×’ indicates an instance under consideration. The data subsets
from which an expert is built to be used to this instances are plotted in (a) for
CLU, in (b) for CL2 and in (c) for FEA.

In addition to the there discussed techniques, we include the averaging tech-
nique into the experiments. We will refer to it as MMM.

Let ŶCLU , ŶCL2 and ŶFEA be the labels output by the three respective

techniques. Then ŶMMM = ŶCLU+ŶCL2+ŶFEA

3 . The intuition is to combine the
diverse views on the same instance obtained by the respective methods.

It can be viewed as an ensemble of ensembles, where classifier selection is used
in the first level and then classifier fusion is applied on top. This combination is
similar to random oracle [11]. The principal difference is that random oracle uses
the same partitioning technique for all miniensembles. In this experimental study
we investigate the performance of alternative partitioning techniques rather than
ensemble building techniques, thus we do not include oracles in the experiments.

In addition, we include two benchmark techniques. With the first we will test
the benefit of specialization. Here the instances to train the local classifiers are
assigned at random instead of employing a directed procedure. In this case the
classifiers are expected to have no specialization, since it will be trained on a
random subset of the historical data. We refer to this technique as RSS.

The second benchmark technique does not do any partitioning of the data
at all, it just trains a single classifier on all the historical data. We will test the
effect of smaller training sample size to the accuracy with it. We call it ALL.

Finally, we include a baseline technique, which assigns all the labels according
to the highest prior probability. We refer to is as NAY.

The number of clusters. In the toy dataset four clusters can be visually
identified. We investigate the strategies of building local classifiers under two
scenarios: A the number of subclasses fits correctly (in our toy dataset k = 4)
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Fig. 3. Illustration of data partitioning: (a) CLU, (b) CL2 and (c) FEA.

and B the number of classes is incorrect (we use k = 9). That means for CLU,
FEA and RSS we test k = 4 and k = 9 respectively. For CL2 we test k1 = k2 = 2
and k1 = k2 = 3. The latter case leads to k = 3× 3 = 9 local experts for CL2.

Base classifier. We choose logistic regression as the base classifier. The
motivation for this choice is twofold. First, the weights can be interpreted as
the importance score of each feature. Thus it is popular in application tasks,
such as credit scoring, where heterogeneity of the data is an issue and local
expertise models intuitively make sense. Second, it is a parametric classifier,
thus rearranging the training subsets change the local expert rules significantly.

We already mentioned that data partitioning techniques are likely to distort
prior probabilities of the classes within each subset as compared to the whole set
of historical data. Logistic regression uses prior information in training, thus a
correction for priors is required. We use a prior correction for rare events [9]. The
regression coefficients are statistically consistent estimates, while the correction

for an intercept is as follows: β0 = β̂0 − log
[(

1−τ
τ

) (
π

1−π

)]
, where β̂0 is an

intercept estimated from the training sample, τ is the population prior for the
’class 1’ and π is the sample prior for the ’class 1’.

3.2 Results

In Table 1 we provide the testing errors of the discussed strategies. The best
results indicated in bold. In both cases, when the number of subsets fits the
underlying data and when it does not MMM outperforms the baseline strategies
by a large margin. In case the number of clusters is correct, CLU has comparable
performance, however it fails here if k is incorrectly set.

Interestingly, we observe an improvement in the performance of FEA when
the number of subsets is increased to k = 9. This can be explained by the nature
of the modeling data. It is not linearly separable, thus the slices of the data
selected by FEA are not separable as well, see Figure 3(c). But the smaller the
slices in this case, the more linearly separable are the subsets.



Table 1. Testing erors using the modeling dataset.

A: k = 4 B: k = 9
error st. err. error st. err.

CLU 10.6% (±0.2) 12.1% (±0.2)
CL2 13.9% (±0.2) 14.3% (±0.2)
FEA 17.1% (±0.3) 14.1% (±0.2)
MMM 10.5% (±0.2) 10.5% (±0.2)
RSS 49.7% (±0.4) 49.8% (±0.4)
ALL 49.7% (±0.4) 49.8% (±0.4)
NAY 50.0% (±0.7) 50.0% (±0.7)

4 Experiments with Real Data

We analyze the performance of the three techniques using six real datasets.

4.1 Datasets

The characteristics of the six datasets used in the experiments are presented in
Table 2. All datasets present a binary classification task for simplicity and com-
putational issues; however, the tested methods are not restricted to the binary
tasks. For Shuttle data we aggregated the classes into binary task (class 1 against
all the others). In Marketing data we transformed the categorical features to nu-
merical by expanding the feature space. We constructed Chess dataset2 using the
statistics from Chess.com, the task is to predict the outcome of a game given
the players and game setup characteristics. Elec2 dataset is known to be non
stationary. In these settings non stationarity is expected to be handled directly
by local learners. Data comes from a mix of sources, since the datasets at hand
by the author were selected to be included into the experiments.

Table 2. Datasets.

size dimensionality class balance source

cred 1000 23 70% − 30% (German credit) [1]
shut 43500 9 22% − 78% (Shuttle) [1]
spam 4601 57 39% − 61% (Spam) [6]
marc 8993 48 47% − 53% (Marketing) [6]
elec 44235 7 43% − 57% (Elec2) [5]
chess 503 8 39% − 61% our collection

4.2 Implementation details

Training-testing sets. Holdout testing procedure is used. Each dataset is split
into two equal parts at random, one is used for training, the other for testing.

2 The dataset is available at http://sites.google.com/site/zliobaite/resources-1 .



Parameters and experimental choices. The number of partitions was
fixed to k = 4 in all partitioning techniques (CLU, CL2, FEA, RSS). We choose
to use simple and intuitive k-means clustering algorithm.

For FEA we choose the partitioning feature to be the first feature in a row
having 4 or more distinct values. The selected feature is different for each dataset,
but the procedure for choosing it is the same for all.

4.3 Experimental goals

The goal of these experiments is to compare the classification accuracies when
using the three partitioning techniques (CLU, CL2, FEA) and a combination of
those (MMM) and analyze the underlying properties of the data leading to these
accuracies.

We aim to be able to assign the credits for a better accuracy. Thus, two
benchmarks (ALL, RSS) and a baseline (NAY) are included for control reasons.
We look at the following guidelines for control:

– We expect the partitioning techniques (CLU, CL2, FEA) to do better than
no partitioning (ALL) in order for partitioning to make sense.

– We expect random partitioning (RSS) not to do much worse than no par-
titioning (ALL). Much worse accuracy would indicate the problems due to
small sample size within each partitioning.

– NAY gives the error of classification by the largest prior, given equal costs
of mistakes, we expect all intelligent predictors to do better.

In addition, we aim to analyze the effect of directed diversity for the accuracy
of MMM, achieved by the presented techniques for building local classifiers.

We present two sets of the experimental results. First we present and discuss
the accuracies of each method. Second, we analyze the relationship between
outputs of the four techniques (CLU, CL2, FEA, MMM).

4.4 Results

In Table 3 the testing errors of the alternative partitioning techniques are com-
pared. Clustering techniques and feature based split do not show significant
effect on accuracies individually. However, blending all three (MMM) leads to
significant improvement in accuracy and dominates in five out of six datasets.

RSS performs worse than ALL in all six datasets, which points out the effect
of training set size (smaller in RSS) to the final accuracy. If we partition input
space into non overlapping regions to gain on specialization of classifiers, natu-
rally we loose on sample size. However, as seen from the table, here these deterio-
ration effects are not that drastic. Smaller sample size partially explains not out-
standing performance of the individual partitioning methods (CLU, CL2,FEA).

Averaging over three methods leads to significant improvement in accuracy,
thus we look at how diversified are the individual outputs. In Figure 4 we picture
simple pairwise correlations between classifier outputs. Black corresponds to



Table 3. Testing errors using the real datasets.

cred shut marc spam elec chess

testing errors
CLU 31.8% 3.9% 30.5% 11.0% 29.3% 22.2%
CL2 32.8% 2.2% 32.1% 11.6% 32.5% 27.0%
FEA 28.7% 1.6% 28.8% 11.5% 32.4% 28.3%
MMM 28.2% 2.1% 24.8% 8.4% 24.7% 19.3%
RSS 32.7% 5.3% 34.5% 11.5% 32.1% 27.9%
ALL 31.2% 5.4% 32.2% 11.7% 32.7% 26.9%
NAY 31.0% 21.4% 46.5% 38.7% 42.6% 42.1%

standard error (±2.0) (±0.1) (±0.7) (±0.7) (±0.3) (±3.0)
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cred shut marc spam elec chess

Fig. 4. Correlations of the classifier outputs.

perfect correlation (1) and while denotes independence (0). ’Spam’ and ’shut’
are nearly black because overall accuracy on these datasets is higher.

In the experiment we used fixed number of clusters (k = 4). In order to see
the effect of local specialization we look at the sensitivity of the results to the
number of clusters. For that test we choose the two largest datasets ’shut’ and
’elec’ to have sufficient number of instances for large number of partitionings.
In Figure 5 we plot the relationship between the number of clusters and testing
error for the comparable methods.

The performance of the partitioning methods is improving with increasing
number of clusters and then stabilizes, especially in ’shut’. The trends indicate
that given large enough datasets, directed classifier specialization is beneficial to
the final accuracy.
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Fig. 5. Sensitivity of testing accuracy to the number of clusters: (a) ’shut’, (b) ’elec’.



5 Conclusion

We experimentally investigated three approaches of building local classifiers.
Each partitioning technique individually often does not give significant improve-
ment in accuracy as compared to a single classifier. However, blending the three
techniques demonstrated significant improvement in accuracy as compared to
the baseline and benchmarks.

This approach can be viewed as two level ensemble. The first level uses de-
terministic classifier selection from a pool of local classifiers. The second level
averages over individual classifiers selected from different partitioning of the in-
put space.

A natural and interesting extension of this study would be to look at par-
titioning techniques, not limited to distance in space as clustering. Developing
meta features for subsets of instances is one example.
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